Járművek Gépjárművek villamos berendezései, elektronikus vezérlő és szabályzó rendszerei Lőrincz Illés Elérhetőségek: Közúti és Vasúti Járművek Tanszék.

Slides:



Advertisements
Hasonló előadás
Mercedes-Benz Citaro G BlueTec Hybrid autóbuszok üzemeltetési tapasztalatai Magyar CIVINET 5. találkozója Zalaegerszeg Szeptember Köszönti.
Advertisements

Gyermekek a leszakadó világban Társadalmi állapotrajzok konferencia MTA Szociológiai Kutatóintézet november 19.
Lorem ipsum dolor sit amet, consectetur Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore Közlekedési.
KIÜRÍTÉS. ÁLTALÁNOS ELŐÍRÁSOK A kiürítésre számításba vett útvonalon körforgó, toló, billenő és emelkedő zsalus rendszerű, valamint csak fotocella elven.
1 Az összeférhetőség javítása Vázlat l Bevezetés A összeférhetőség javítása, kompatibilizálás  kémiai módszerek  fizikai kompatibilizálás Keverékkészítés.
Az elektromos áram hatásai:  Hőtani hatás  Fénytani hatás  Mágneses hatás  Élettani hatás.
Nem látható, nem hallható, nem szagolható, nem ízlelhető Az ELEKTROSZMOG Ennek ellenére szinte mindenhol folyamatosan ki vagyunk téve a veszélyének.
Szenzorok Ellenállás változáson alapuló szenzorok.
ENERGIA TAKARÉKOS RENDSZERSZEMLÉLET AZ ÉPÜLETGÉPÉSZETBEN Fehér János okl. kohómérök Fűtéstechnikai szakmérnök Székesfehérvár, 2010.JAN.20.
Napenergia-hasznosítás az épületgépészetben Konferencia és kiállítás november 9. Nagy létesítmények használati melegvíz készítő napkollektoros rendszereinek.
TEROTECHNOLÓGIA Az állóeszközök újratermelési folyamata.
Labor időpontok.
EN 1993 Eurocode 3: Acélszerkezetek tervezése
Számítógépek jellemzői, ügyfél - kiszolgálók jellemzői, számítógépházak, tápegységek elnevezései, funkciói, főbb jellemzői Elmélet 1.
Brikettálás – új innovatív technológia
Energetikai gazdaságtan
Vezetékes átviteli közegek
Becslés gyakorlat november 3.
Hajók gépészeti berendezései
Egyszerű kapcsolatok tervezése

Az Európai Uniós csatlakozás könyvtári kihívásai
Kockázat és megbízhatóság
Downstream Power Back Off (DPBO)
Levegőtisztaság-védelem 6. előadás
Colorianne Reinforce-B
SZÁMVITEL.
A kiváltást tervezők / megvalósítók és Az fszk TÁRS projektje közti együttműködés rendszere EFOP VEKOP TÁRS projekt.
A mozgási elektromágneses indukció
M4 metróvonal beüzemelési folyamatai
Korszerű gyújtórendszerek
Járművillamosság-elektronika
Downstream Power Back Off (DPBO)
Automatikai építőelemek 8.
Megújuló energiák Készítette: Petőfi Sándor Általános Iskola
A márkázás Marketing gyakorlat 6..
Dr. habil. Gulyás Lajos, Ph.D. főiskolai tanár
B.Sc. / M.Sc. Villamosmérnöki szak
AZ OKOSHÁZAK BEMUTATÁSA
Nap és/vagy szél energia
Tájékoztató az Önkormányzati ASP Projektről
Elektrotechnika – Autóvillamosság
Számítógépes szimulációval segített tervezés
Fényforrások 3. Kisülőlámpák 3.4 Működtető szerelvények
Ékszíj-, laposszíjtárcsa Kúpos kötések, szorítóbetétek
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
A villamos installáció problémái a tűzvédelem szempontjából
Új pályainformációs eszközök - filmek
Fényforrások 3. Kisülőlámpák
Sigfox technológia és hálózatok
Rendszerek energiaellátása 10. előadás
Épületek egészségtana
TÁRGYI ESZKÖZÖK ELSZÁMOLÁSA
A számítógép története
Megújuló energiaforrások
Fizikai kémia I. a 13. VL osztály részére 2013/2014
MIÉRT ÉRDEMES HOZZÁNK JÖNNÖD?
VERSENY és SZOLIDARITÁS a gyógyításban
Együtt Nyírbátorért Helyi Közösség
Az állóképesség fejlesztésének módszertana
Fizikai kémia 2 – Reakciókinetika
Zsugorkötés Kötés illesztéssel zsugorkötés
Állandó és Változó Nyomású tágulási tartályok és méretezésük
Áramlástan mérés beszámoló előadás
Energetikai Intézkedési tervek végrehajtása
Az alábbiak közül mely esetekben működik a homokszóró berendezés?
Abacusan – ArTec Robotist Robotika
Hagyományos megjelenítés
KOHÉZIÓS POLITIKA A POLGÁROK SZOLGÁLATÁBAN
Előadás másolata:

Járművek Gépjárművek villamos berendezései, elektronikus vezérlő és szabályzó rendszerei Lőrincz Illés Elérhetőségek: Közúti és Vasúti Járművek Tanszék L2-4. E-mail: lorinczi@sze.hu Előadás anyagok: rs1.sze.hu/~lorinczi 2017.03.16.

Szakmai gyakorlat Info: http://karrier.szeportal.hu/images/stories/kszgy/kszgy_jelentkez%C3%A9si%20 seg%C3%A9dlet_honlapra.pdf Lépésről lépésre áttanulmányozni Audi Karon még mindig szünetel az elektronikus ügyintézés 6 hét !!! (több részben is, nem csak 8 órában) Prakting gyakorlat elfogadtatható Munkahellyel rendelkezők előnyben Beszámoló formátuma egyezik a szakdolgozatéval

Járművek Gépjárművek villamos berendezései, elektronikus vezérlő és szabályzó rendszerei Gépjármű villamos rendszerének elemei: energiaforrások fogyasztók villamos hálózat   Energiaforrások: energiatároló: akkumulátor energiaellátó: generátor

A gépjármű energiaháztartása: Minden villamos fogyasztó ellátása Járművek A gépjármű energiaháztartása: Minden villamos fogyasztó ellátása Akkumulátor töltése A generátorteljesítménynek, akkumulátor kapacitásnak és a fogyasztók teljesítményének összhangban kell lennie Túlterhelt generátor - kiegészítő fogyasztók túlzott beépítésével

Biztosítékok Vezetékeken fellépő túláram ellen Védi a fogyasztókat Tűz is lehetséges lenne nélküle!!! Kivitel: lemez, rúd vagy késes 5, 8, 10, 16, 20, 25, 40, 80 A Nincs védve: akksi, generátor, indító motor

Jármű villamos energia igénye A generátor átlagteljesítményének az akkumulátor tárolóképességének és a fogyasztók átlagteljesítmény szükségletének kell összhangban lennie. Az akkumulátor kapacitást az indítómotor jellemzői határozzák meg. Míg a generátorteljesítmény a hálózat energiafogyasztásából számolható ki.

Fogyasztók csoportosítása Folyamatos üzeműek (gyújtás(28 W), üzemanyag szivattyú(60 W), műszerek(10 W), befecskendezés(80 W)) Szakaszosan üzemelnek (lámpák?(100 W), rádió (20 W), ablaktörlő(60 W), hűtés-fűtés(80 W)) Rövid ideig üzemelnek (indítómotor(1800 W), kürt(40 W), ablakmosó(20 W), szivargyújtó? (100 W), hátramenet lámpa(10 W), belső világítás(10 W))

Az indító akkumulátor egy energiatároló. Akkumulátorok: Indításnál, vagy álló motornál az akkumulátornak kell az áramellátást biztosítania. Az indító akkumulátor egy energiatároló. Feltöltésénél elektromos energia kémiai energiává alakul, és kisütésnél a kémiai energia elektromos energiává alakul vissza. Gépjárművekben jelenleg a legelterjedtebb a savas ólom akkumulátor.

Akkumulátor működése Uc=2 V Pb+2H2SO4+PbO2 PbSO4+2H2O+PbSO4 Kisütéskor elektrolit hígul Töltéskor sűrűbb lesz

Akkumulátorok: Primer és szekunder akkumulátorok 1.Savas (ólom akksik) 2.Lúgos (Ni-Cd, Ni-MH) 3.Olvadék és szerves elektrolitú (Li alapú) 4.Szekunder galvánelem (Na-S elemek) Adatai: pl. 12V 84Ah 280A

Jármű akkumulátorokkal szembeni igények, követelmények 1. Tölthetőnek kell lenni (szekunder elem) 50-2000 alkalom 2. Nagy terhelhetőségű legyen 1-10 kW, akár 1000 A terhelő áram, kicsi belső ellenállás 0,1-0,001 Ohm 3. szélsőséges környezeti hatásokat elviselje (rázás 30m/s2, 30Hz, tömítettség, hideg és sósköd állóság) 4. nagy fajlagos energiatároló képesség Ws/kg, kis tömeg és térfogat

Jármű akkumulátorokkal szembeni igények, követelmények 5. Hosszú élettartam (járművel azonos 3-7 év) 6. Kis karbantartási igény, minimális gondozás 7. Sokáig őrizze az eltárolt energiát- kis önkisülésű legyen (régen napi 1 %, ma akár 200 napig raktározható) 8. mélykisülést elviselje (elektolit felhígul, masszahullás)

Jármű akkumulátorokkal szembeni igények, követelmények 9. Ne legyen környezetszennyező, újrafelhasználható legyen !!! 10. Egyszerű üzembe helyezés 11. Versenyképes ár (jármű árának kb. 1 %-a, ólom olcsó, ezért terjedt így el)

Akkumulátor felépítése Savas ólom akkumulátor

Töltési módok Gyors (nagy induló áramú) Normál (hosszú idejű) Formázó (javító, többszöri töltés-kisütés) Csepp (szinten tartó)

Gondozásmentes akkumulátorok Állapotjelző – varázsszem Golyó sűrűsége:  =1,2 kg/dm3

Lítium akkumulátorok 40 Ah*30

Jó elektromos töltés tároló Nincs memória effektus Lítium akkumulátorok Legkönnyebb fém Jó elektromos töltés tároló Nincs memória effektus Pozitív elektróda: Li-Fe-PO4, Li-Co, Li-MnO Negatív elektróda: grafit Szigetelő: műanyag membrán Tetszőleges formára kialakítható Nagyon drága

Névleges feszültség: 3.2-3.7 V Umax: 4.2 V Umin: 2.7 V Lítium akkumulátorok Töltés-kisütés: BMS (battery managment system - áram, feszültség, hőmérséklet és cella kiegyenlítés felügyelője Névleges feszültség: 3.2-3.7 V Umax: 4.2 V Umin: 2.7 V 1000-2000-szer is tölthető (kisebb töltő és kisütő áramnál tartósabb)

Energia sűrűség

Kisütés görbék

Töltés görbék

Generátor A generátor feladata, hogy áramot szolgáltasson az akkumulátor töltéséhez és a fogyasztók működéséhez. A generátor háromfázisú váltakozó áramot állít elő, ezért a generátor által szolgáltatott kijövő váltakozó áramot egyen-irányítani kell, mivel a gépjárműbe beépített összes készülék egyenárammal működik. A generátorban található egy feszültségszabályzó is, amely a generátorfeszültséget konstans értéken tartja a motor egész fordulatszám tartományában.

Generátor Típusai: korábban egyenáramú (dinamó- Jedlik Ányos 1861) ma váltakozó áramú Fajtái: kiálló pólusú (jellegzetes forgórészről kapta nevét) körmös pólusú (egyes, kettes forgórészén egy gerjesztő tekercs köré) induktor generátor (tekercseletlen forgórész, nem kell csúszógyűrű)

Váltakozó áramú generátor Egyenirányítás diódákkal (nem kell kommutátor- nincs körtűz) Armatúra tekercselés-3 fázisú, a lemezelt állórész hornyaiban Forgórész: egyenáramú tekerccsel gerjesztett, csúszógyűrűkön keresztül

Körmöspólusú generátor

Körmös pólusú generátor Csúszógyűrűs kivezetésű Csúszógyűrű nélküli (Gerjesztő tekercs is áll csőtengely kivitelű) Gerjesztő géppel egybeépített generátor (Forgódiódás)

Feszültség szabályzás Ui = k n 600<n<6000 Ha n változik, akkor a fluxust is változtatni kell Unévl=14 V Fordulatszámra lineárisan, gerjesztő áramra nem lineárisan változik

Feszültség szabályzás elve e1-e2 zár: Ig nő e1-e2 nyit: Ig csökken e2-e3 zár: nincs gerjesztés

Legkisebb rezgési frekvencia 30 Hz Átlagos 80-200 Hz között Magyarázat: Növekvő fordulatnál vagy kisebb terhelésnél Ib átlag elég (kisebb fluxus elég) Míg kisebb fordulatra vagy növekvő terhelésre nagyobb fluxus kell, azaz nagyobb gerjesztés Ic Legkisebb rezgési frekvencia 30 Hz Átlagos 80-200 Hz között

Nagy elektromosenergia‑igény 14/42 voltos rendszerre is Indító generátor Nagy elektromosenergia‑igény 14/42 voltos rendszerre is start/stop funkció gyorsítások támogatása gyors és zajmentes motorindítás a hajtásláncba teljesen integrált indító‑generátor a motorhoz szíjhajtáson keresztül kapcsolt indító‑generátor kidolgozása

állandómágneses gerjesztésű belső rotorú szinkrongép Indító generátor állandómágneses gerjesztésű belső rotorú szinkrongép kiegészítő, motoroldali kuplunggal kombinálva, motorfék‑üzemmódban a motorról lekapcsolva a fékezési energia jelentős hányada visszanyerhető. Szakemberek a vázolt elrendezést "minimálhibrid„ néven említik.

Indító generátor

Indító motorok

Indító motorok Belsőégésű motor nem képes magától elindulni Nagy nyomaték kell dugattyú súrlódás, kompresszióból fakadó ellenállás csapágysúrlódás T-től függő viszkozitás miatt

Indító motorok Milyen legyen az indító motor? Melyik egyenáramú gépnek nagy az indítónyomatéka kis fordulatnál? Soros egyenáramú motor Benzinesnél:40-80 ford/perc Dízel:100-200 ford/perc Áttétel:i=z1/z2=1:8-1:20

Szerkezeti felépítés szempontjai Indításkor legyen kényszerkapcsolat Villamos kapcsolat fogaskerekek összekapcsolódása után Rövid működési idő (100 A) Indítómotor forgórésze nem lehet merev összeköttetésű belső égésű motorral (szabadon futó) Indítás után mielőbb álljon le (mechanikus vagy villamos fék)

Különböző csoportosítások Teljesítmény szerint: P<1 kw, 1,5 kw<P<5 kw 5 kW<P Feszültség szerint: 12V, 24V Szerkezet szerint: közvetlenül hajtó indítómotor lendítő kerekes

Csúszófogaskerekes indítómotor

2. rész: Gépjárművek világító és jelzőberendezései

Kanyar bevilágító lámpa tolatólámpák helyzetjelző Lámpa típusok fényvetők Ködlámpák Nappali menetfény Kanyar bevilágító lámpa tolatólámpák helyzetjelző irányjelző, elakadásjelző féklámpák Műszerfal megvilágítás utas és csomagtér lámpák rendszámvilágítás

Fényvetők felépítése Pontszerű fényforrás – mindenfelé sugároz Széttartó sugarakat forgási paraboloid tükörrel párhuza- mosítják Fókuszpontban legyen az izzó Nagyobb tükör nagyobb fényerő Tükör mélyhúzott acéllemez, lakkozva, alumíniummal gőzölve

kis gyújtótávolságú, mélyen homorú tükör jó fényhasznosítású Fényvetők felépítése Távolsági lámpák: kis gyújtótávolságú, mélyen homorú tükör jó fényhasznosítású irányítottság nem annyira lényeges Ködlámpa: nagy gyújtótávolság irányítottság fontos fényáram kihasználás rosszabb

A valóságos fényforrás nem pontszerű, kissé széttartó sugárnyaláb Tompított fényvetők A valóságos fényforrás nem pontszerű, kissé széttartó sugárnyaláb Ezért árnyékolás szükséges az elvakítás megakadályozására Aszimmetrikusnak kell lennie Európában (kevésbé zavarja a szemben jövőt) 40 m-ig biztosítsa a beláthatóságot Fénynyaláb magassága és kapcsolhatósága, mint a fényszórónál

Tompított fényvetők Fókuszpont elé helyezve az izzót és lefelé árnyékolva a fénysugarak a vízszintes felezősík fölé nem világít – nem vakítja a szemből jövőket

Fényvetők felépítése Tükrözőfelület (paraboloid tükör) Fényforrás Szóróüveg

Kezdetekben csak ilyen izzók Rossz fényhasznosításúak Fényforrás W-szálas izzó: Kezdetekben csak ilyen izzók Rossz fényhasznosításúak Nem kell segédberendezés A wolfram szál felizzik az áram hatására Fényt, hőt és gőzt (3000 oC körül) sugároz Fényhasznosítás 14-16 lumen/watt

Adalék halogén gáz (jód) a búrában Fényforrás Halogén izzó Adalék halogén gáz (jód) a búrában Termikus diffúzió hatására wolfram-jodid képződik, amely 600 oC felett visszaalakul Nem gőzölög így el annyi W – hosszabb élettartam Magas hőmérséklet miatt kvarcüvegből készül Fényhasznosítása 20-22 lumen/watt

Élettartam változás Az izzószál hőmérséklete az áramtól, közvetve a feszültségtől függ 5 %-kal növelve a feszültséget a fényerő 20 %-kal nő élettartam 50 %-kal csökken Fesz. Szabályzás nagyon fontos

Közös búrájú izzók tulajdonságai Fő és mellékizzó egy búrában Távolsági izzószál a fókuszpontban Tompított izzószál előtte, alulról kanállal árnyékolva A foglalat biztosítja, hogy csak adott irányban építhető be Az asszimetriát a 165 o-os takarókanál biztosítja

Közös búrájú izzók tulajdonságai

Ködlámpa (ködfényszóró): Lejjebb a többi fényvetőnél Kiegészítő lámpák Ködlámpa (ködfényszóró): Lejjebb a többi fényvetőnél Szóróüveg bordázata függőlegesen sűrűbb – jobban teríti a fényt – kevesebb verődik vissza a ködről 25 cm-nél nem lehet közelebb az úthoz Tompított fényszóró után kapcsolható Hátsó helyzetjelző ködlámpa: Csak vörös színű lehet Kötelező visszajelezni borostyán sárga színnel

Irányjelzők, elakadásjelzők Irányváltási szándékot jelzünk vele Elöl, oldalt és hátul villogó, sárga fénnyel, zöld visszajelzés (90±30 villogás percenként) Azonos oldalon egyszerre villanjanak Hibás izzót jelezze (nem villog vagy más ütemben)

VW Golf Plus

Nappal 50, éjjel 300 m-ről legyen látható Féklámpa Nappal 50, éjjel 300 m-ről legyen látható 4-szeres fényű, mint a helyzetjelző 10 %-os fékpedál nyomásnál már égjen Világító lámpákat biztosítékkal védjük /külön a jobb és bal oldalt/ Nagyobb fogyasztókat relékkel kapcsoljuk

Rendszámtábla és belső világítás Éjjel 20 m-ről olvasható kell legyen a rendszám Helyzetjelzővel együtt Belső világítás külön kapcsoló

Mercedes-Benz S-Class

Xenon lámpák (xenon gázzal töltött izzók): Modern lámpák Xenon lámpák (xenon gázzal töltött izzók): Elektródák között elektromos ívfény 23 kV-os trafó /gyújtáskor/, később 80-100 V 5-6 másodperc után már 90 %-kal világít Majd 40-50 mp múlva maximális fényerőt eléri HID /high intensity discharge/ lámpa 3200-3500 lumen (Halogén izzó: 1000 lumen) 1.5-2 mp után 90 % fényerő 20 mp után 100 % fényerő

Miért jobb a xenon, mint a halogén? Jobb látási és láthatósági feltételek (3-4 szeres fénytöbblet) Nagyobb oldalirányú terítés Színe jobban közelíti a természetes fényt (nem fárasztja a szemet annyira) 6-7 szeres élettartam Rázásra nem érzékeny Kisebb fogyasztás(55-100 W helyett 35 W)

Különbségek a xenon és halogén izzók esetében Foglalatuk azonos, de kell egy trafó a xenonhoz CAN buszos áramfigyelésnél hibát jelezhet a kisebb fogyasztás miatt Speciális izzókábel (+20 W, nincs spórolás) Ki kell kapcsolni az izzó kontrollt vagy átállítani xenonra Single-xenon: egyfajta lámpa csak (pl. tompított) Bi-xenon: két lámpa is xenon (tomp. és reflektor) Tri-xenon: három fajta lámpa is xenon (ködlámpa is)

Legújabb fejlesztések LED (Light Emitting Diode) 1955, Rubin Braunstein felfedezte a gallium-arzenid (GaAs) és egyéb félvezető-ötvözetek infravörös fénykibocsátását. 1961, General Electric forgalmazza 1980-tól nálunk is (csak piros, zöld és sárga színben először) 100 lumen/watt fénykibocsátás 300-400 mA áramfelvétel Tömbösítés, több led-et kapcsolgatnak elektronikával vezérelve

LED-es termékek előnyeik Gyorsabban kapcsolnak, akár néhány száz ms-mal – féklámpánál lényeges– métereket nyerhetünk vele Áramfelvétele töredéke a hagyományos izzókénak (ha a Szesocar-on az összes lámpa ég, akkor 14 wattot fogyaszt) élettartamuk többszöröse a régi lámpákénak Rázkódással szemben érzéketlen A felvett teljesítmény15 %-át sugározza ki fény formájában (többi hővé alakul, halogén izzóknál ez 5 % volt) Negatívum: túlfeszültségre érzékeny

LED-es termékek Először a hátsó lámpákba kerültek beépítésre (fék, helyzetjelző, tolató), majd belső világításként is kezdték használni 2008-tól kerül sorozatgyártásban első lámpába is (tompított és távolsági fényszóró, motorway light – nagy sebességhez, PBL (progressive bending light) – kanyar bevilágításához, DRL (daytime running light – nappali jelző világítás) ),akár XLED (kombinált Xenon és LED-es lámpa) Gyártók: VALEO, TOYODA, HELLA, OSRAM, STANLEY, LUMILEDS (Philips) Alkalmazók: Renault, Saab, Lexus, Toyota, VW, Audi

Hella and Stanley

Hella’s earlier LED-headlamp prototype

Valeo full LED

Hátsó lámpák Toyota RAV4 SUV Opel Antara GTC

A gépjármű elektronikus vezérlő és szabályozó rendszerei Az autókban található ECU-kat funkciójuk alapján általában a következő nagyobb csoportokba sorolják: erőátviteli rendszerek (motorvezérlő, váltóvezérlő) karosszéria rendszerek (fékek, sebességszenzorok) utastér rendszerek (ablakemelő, világítás, központi zár) multimédia rendszerek (autórádió, hangosítás) biztonsági rendszereket (légzsák, ABS, ESP) védelmi rendszereket (ugrókódos ajtónyitó, indításgátló) vezetői információs rendszereket (GPS, tolatóradar)

Busz rendszerek Egy mai autóban 3-5 független kommunikációs hálózat működik. Ezek a kommunikációs hálózatok általában nem egyetlen fizikai kialakítást és protokollt követnek, hanem az adott alkalmazási kör számára legjobb megoldást alkalmazzák. A manapság legelterjedtebb három kommunikációs protokoll a: CAN (Controller Area Network), LIN (Local Interconnect Network) max 19,2 kbit FlexRay 20 Mbit/s MOST (Media Oriented Systems Transport) 150 Mb CAN-bus a Bosch és az Intel közös fejlesztése

Szabványos buszprotokollok alkalmazása gépjárművekben