Az érintőképernyő 1960- napjainkig.

Slides:



Advertisements
Hasonló előadás
A HELYI ÉS A TELEPÜLÉSI ADÓRENDELETEK SZABÁLYOZÁSÁNAK EGYES KÉRDÉSEI.
Advertisements

Perifériák Készítette: Friss István Dávid. A perifériák csoportosítása Bemeneti (Input) eszközök Kimeneti (Output) eszközök Be-és kimeneti (I/O) eszközök.
TÖMÖRÍTÉS. Fogalma A tömörítés egy olyan eljárás, amelynek segítségével egy fájlból egy kisebb fájl állítható elő. A tömörítési arány függ a fájl típusától,
Az IKER önértékelő IKER társadalmasítás workshop Budapest, április 12.
NRC Omnibusz – november. Okostelefon használat  A éves internetezők 64%-a használ okostelefont (saját/céges okostelefont, vagy más készülékét).
Dr. Szűcs Erzsébet Egészségfejlesztési Igazgatóság Igazgató Budapest, szeptember 29. ÚJ EGÉSZSÉGFEJLESZTÉSI HÁLÓZATOK KIALAKÍTÁSA ÉS MŰKÖDTETÉSE.
AZ ELEKTRONIKUS KÉPZÉS MINŐSÉGBIZTOSÍTÁSA INFORMATIKA A FELSŐOKTATÁSBAN DEBRECEN DR. ZÁRDA SAROLTA GÁBOR DÉNES FŐISKOLA.
Vetésforgó tervezése és kivitelezése. Vetésforgó Vetésterv növényi sorrend kialakításához őszi búza250 ha őszi árpa50 ha lucerna ebből új telepítés 300.
Informatikai rendszerek általános jellemzői 1.Hierarchikus felépítés Rendszer → alrendszer->... → egyedi komponens 2.Az elemi komponensek halmaza absztrakciófüggő.
Monitor A monitor a személyi számítógép legfontosabb kiviteli (output) perifériája. Feladata az információk, adatok megjelenítése. Biztosítja a számítógéppel.
A vállalatok marketingtevékenysége és a Magyar Marketing Szövetség megítélése Kutatási eredmények az MMSZ részére (2008. július)
NSZFI SZFP Programkoordinációs Iroda Minőségfejlesztési Terület NSZFI SZFP Programkoordinációs Iroda Minőségfejlesztési Terület Teljesítményértékelési.
EU pályázati programok A szervezet / változások 1.A pályázók adminisztrációs terheinek csökkentése a projektfejlesztési, pályázati szakaszban.
KÉPZŐ- ÉS IPARMŰVÉSZET ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA (középszintű) május-június.
TEROTECHNOLÓGIA Az állóeszközök újratermelési folyamata.
Gazdasági informatika - bevezető
3. tétel.
Valószínűségi kísérletek
Vezetékes átviteli közegek
Pályaválasztási tanácsadás
Készítette Tanuló: Kereszturi Patrik
Összeállította: Horváth Józsefné
Microsoft Office Publisher
A közigazgatással foglalkozó tudományok

Az Európai Uniós csatlakozás könyvtári kihívásai
Kockázat és megbízhatóság
A KINOVEA mozgáselemző rendszer használata
MTMT szervezeti hierarchia kialakítása a Széchenyi István Egyetemen
Kockázat és megbízhatóság
Tömörítés.
Baross László Mezőgazdasági Szakközépiskola és Szakiskola Mátészalka
Laboratóriumi méréstechnikai gyakorlat 3/15. M osztály részére 2016.
Vörös-Gubicza Zsanett képzési referens MKIK
CSOPORT - A minőségellenőrök egy megfelelő csoportja
A mozgási elektromágneses indukció
Elektrosztatikus festés (szinterezés)
CONTROLLING ÉS TELJESÍTMÉNYMENEDZSMENT DEBRECENI EGYETEM
3. A robot képernyőmenüje
Monitor(LCD).
Tájékoztató az Önkormányzati ASP Projektről
Számítógépes szimulációval segített tervezés
RUGÓK.
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
A légkör anyaga és szerkezete
Compliance és Corporate Governance
Önköltségszámítás.
Készletek - Rendelési tételnagyság számítása -1
A villamos installáció problémái a tűzvédelem szempontjából
Környezeti Kontrolling
Szervezet-fejlesztés
Új pályainformációs eszközök - filmek
43.óra Amikre fontos odafigyelni!
A csoportok tanulása, mint a szervezeti tanulás alapja
Tájékoztatás a évi Országos Statisztikai Adatfelvételi Program (OSAP) teljesüléséről az Országos Statisztikai Tanács és a Nemzeti Statisztikai Koordinációs.
TÁRGYI ESZKÖZÖK ELSZÁMOLÁSA
Vasbeton falvasalás megadása és ellenőrzése EC2 szerint
A számítógép története
Megújuló energiaforrások
SZAKKÉPZÉSI ÖNÉRTÉKELÉSI MODELL I. HELYZETFELMÉRŐ SZINT FOLYAMATA 8
I. HELYZETFELMÉRÉSI SZINT FOLYAMATA 3. FEJLESZTÉSI FÁZIS 10. előadás
Foglalkoztatási és Szociális Hivatal
SOTER-LINE Soter-Line Oktatási, Továbbképző és Szolgáltató Kft.
Tájékoztató az EPER pályázati folyamatáról
Áramlástan mérés beszámoló előadás
LIA Alapítványi Ált. Isk. és Szki. Piliscsabai Tagintézménye
A részekre bontás tilalma és annak gyakorlati alkalmazása
Hagyományos megjelenítés
AZ ORSZÁGOS KOMPETENCIAMÉRÉSEK MEGSZERVEZÉSE A TANODÁBAN
KOHÉZIÓS POLITIKA A POLGÁROK SZOLGÁLATÁBAN
Előadás másolata:

Az érintőképernyő 1960- napjainkig

Az érintőképernyő Az érintőképernyő egy olyan vizuális megjelenítő és egyben adatbeviteli felület, amelyet megérintve meghatározza az érintés koordinátáit és ennek alapján vezérelhető az érintőképernyővel ellátott eszköz. Érintőképernyőről akkor beszélhetünk, ha nem használunk közvetítő perifériát (pl.: egér vagy érintésérzékeny rajzpad), hanem közvetlenül érintjük meg a képernyőt, ujjal vagy egy passzív segédeszközzel.

E.A. Johnson (1865-1867) 1965 és 1967 között E.A. Johnson kezdett érintőképernyőt fejleszteni az Egyesült Királyság légi radarirányítása számára. 1968-ban publikált részletes cikket az érintőképernyő technológiáról. Később megoldását az angliai légiirányítás hasznosította is és évtizedekig használták.

Dr. Sam Hurst (1971-1977) 1971-ben a kentuckyi egyetemen tanító dr. Sam Hurst kifejlesztett egy érintőszenzort, ami habár nem volt átlátszó, de mérföldkő volt a technológia fejlesztésében. 1974-ben Hurst által alapított Elographics cég végül kifejlesztette a már átlátszó érintőképernyőt és 1977-ben elkészítette az első igazi rezisztív technológiát, ami évtizedekig a legnépszerűbb megoldás volt.

1972- infravörös érintőképernyő 1972-től az Illionis-i Egyetemen az infravörös érintőképernyős PLATO IV termináloknak köszönhetően, az USA-ban már megjelentek mint oktatásban használatos eszközök. Az első kereskedelmi fogalomban is kapható érintőképernyős személyi számítógép (PC) az 1983-ban megjelent HP-150 volt. Az érintés pontját egy, a képernyő előtt elhelyezett 80 oszlopból és 27 sorból álló infravörös érzékelő rács határozta meg. Az ára pedig 2795 dollár volt.

Bob Boie-1984 A '80-as évekig az eszközök egy időben csak egy érintést tudtak érzékelni és a rövid és hosszú érintés közötti különbséget is csak néhány érintőképernyő tudta kiértékelni. 1984-ben Bob Boie a Bell Labsnál kifejlesztette az első több érintést kezelni tudó (multitouch, többérintéses) érintőképernyőt.

90’s évek fejlődése 1993- Apple, Newton PDA 1993- IBM, Simon Personal Communicator 1993- Apple, Newton PDA A 90-es években elindult az első érintőképernyős ún. „marokkészülékek” forgalmazása. 1993-ban az Apple piacra dobta Newton PDA nevű készülékét. Még ebben az évben az IBM is árusítani kezdte Simon personal fantázianevű telefonját, amelybe építettek egy érintőképernyő vezérelte egységet (naptár, jegyzetelési stb. funkciókkal). Így elsőként ötvözték a telefont és az érintőképernyőt. Az ára 899 dollár lett.[2] Ezután több PDA és GPS készülék is használta az érintőképernyőt.

2000-es újítások 2002- Microsoft 2007- Apple 2002-ben a Microsoft táblagépe még érintőceruzával működött, de az igazi nagy változást az iPhone 2007-es megjelenése hozta, amikor az Apple cég komoly fejlesztéseket végzett az érintőképernyővel.

Működési elv Az érintőképernyők általános működési elve, hogy egy hagyományos kijelző fölé átlátszó érzékelő réteg kerül. Habár e két eszközt összeépítik, működés szempontjából lényegében különálló egységek. Ha a hagyományos kijelzőn látható egy ikon, amit „megnyom” a készülék használója, akkor így a kijelző felett lévő érzékelő réteghez ér hozzá. A behatás miatt az érzékelő felület egy pontján „zavar” keletkezik az alapállapothoz képest. Ezt a jelet aztán a készülék adatfeldolgozó egysége kiértékeli és meghatározza, hogy az érzékelőlapon a nyomás helye pontosan melyik ikonnak felel meg az alatta lévő hagyományos kijelzőn és a készülék szoftvere végrehajtja a „nyomási” eseményhez rendelt feladatot. Így azt az érzetet kelti, mintha a felhasználó közvetlenül az ikont nyomta volna meg.

Rezesztív A rezisztív technológia lényege, hogy két eltérő töltésű átlátszó panelt egy szigetelő réteg választ el. Ez a szigetelő közeg levegő, és szigetelő pontokból álló háló tart távolságot a két réteg között. A panelek felett egy rugalmas átlátszó védőréteg van (többnyire műanyag). Az érintő nyomás hatására összeér a két panel és ezáltal azon a helyen megváltozik a panelek töltése az alapállapothoz képest. Ez alapján számolja ki az eszköz az érintés helyét. Mivel fizikai behatás eredményezi a két felület összenyomódását, lényegében bármilyen segédeszközzel létrehozható a nyomás. Előnye hogy a technika olcsó, ezért még ma is szívesen alkalmazzák, de ugyanakkor más technikákhoz képest ez adja a legkevésbé átlátszó felületet (a fény 70-75%-át engedi csak át). Kezdetben csupán egy érintés helymeghatározását tudta elvégezni a technológia, de ma már képesek a többszörös érintés (multitouch) kiértékelésére is, habár nem olyan kedvező tulajdonságokkal, mint a kapacitív megoldás. A korai PDA készülékekben és GPS eszközökben ezt a megoldást alkalmazták. A rezisztív érintőképernyő működési elve: 1. átlátszó műanyag rugalmas felület, 2. átlátszó elektromos vezető réteg, 3. szigetelő pontok, 4. levegő, 5. elválasztó üveg, 6. képernyő (LCD)

Kapacitív A kapacitív technológia esetén már egy kemény, átlátszó védőfelület van (üveg vagy műanyag), ami alatt egy elektromostér-érzékeny háló vagy -felület helyezkedik el (anyaga legtöbbször indium-trioxid és óndioxid). Így az átlátszó felület felett egy elektromos mező jön létre. Ha ujjunkkal közelítünk a felülethez, akkor zavart okozunk ebben a mezőben, mert ujjunkkal töltést vezetünk el, így a képernyő sarkaiban elhelyezkedő mérők meghatározhatják a változás helyét. Mivel ez a megoldás nem nyomásérzékelésre épül, hanem az érintésre, így nem reagál bármilyen behatásra. Ha nem az ujjunkat használjuk az érintésre, akkor speciális konduktív - töltés felhalmozására alkalmas - eszközre van szükség. A kapacitív technológia drágább, mint a rezisztív, de alkalmasabb a többszörös érintés (multitouch) érzékelésére. Ezt a megoldást használják a legtöbb modern táblagépben és okostelefonban. A fényáteresztő képessége jó, 90%-át átengedi. Természetesen az alapelv-felhasználásra számtalan megoldás született, így többféleképpen hasznosítják ma már a kapacitív technológiát (pl.: mutual-, self kapacitív).

Optikai (infravörös) Az első optikai érintőképernyő esetén nem volt szükség speciális fizikai érintőfelületre. Ez esetben a hagyományos képernyő előtt infravörös érzékelők hálózatából álló sugárrács található, ami egy jelkibocsátó- és egy azzal szemben álló érzékelő párosokból épül fel. Ha valamilyen (nem átlátszó) tárgy megszakítja egy adott ponton az infravörös sugarak útját, akkor a vízszintes és függőleges érzékelők segítségével meghatározható az érzékelés koordinátája. Ma már több optikai megoldás létezik. Például van olyan, ahol az infravörössugár-kibocsátó a felület alá van beépítve az érzékelőkkel együtt, és a felület fölé helyezett (érintést végző) tárgy veri vissza a jelet, amit aztán az eszköz kiértékel.

Akusztikus hullám Az alapelv hasonló a modern optikai megoldáshoz, de itt az érzékelést hanghullámok végzik. Amikor az érintés pontján változások állnak be az érzékelőmezőn, akkor az alapján határozza meg az eszköz az érintés pontját. Előnye, hogy mivel az érzékelőmező nem fizikai akadály, így a fényáteresztő képessége nagyon jó, ugyanakkor nehezen tönkretehető. Előszeretettel alkalmazzák vandálbiztos kijelzők esetén.

Felületkialakítás és védelem Míg egyes eljárások nem kívánnak különleges kijelzővédelmet, addig a legtöbb érintőképernyőnél ez sarkalatos kérdés, már csak azért is, mert az eszközök hordozhatósága komolyabb igénybevételt jelent. A rezisztív technológia esetén a felső rétegnek nemcsak ellenállónak kellett lennie, hanem rugalmasnak is, így műanyagokból készült. A kapacitív eljárás esetén lehetségesé vált a fényáteresztés szempontjából optimális és karcolásnak ellenállóbb üvegfelületek használata. Az üveg fő hátránya hogy törékeny, így speciális anyagokra volt szükség. Az egyik legjelentősebb gyártó a Corning speciális ún. „Gorilla” fantázianevű üvegtípust fejlesztette ki még a 60-as években, amelynél ioncserén alapuló eljárással tették ellenállóvá az üveget, de évtizedekig nem volt rá piaci igény. Steve Jobs az iPhone tervezési szakaszában kereste fel a céget és bízta meg őket a tömeggyártással. Habár a cég először ódzkodott, de Jobs nyomására végül vállalták a korábban kihasználatlan, költséges technológiára való viszonylag gyors átállást. E gyártási eljárás során ioncserés folyamat által kompressziós réteget hoznak létre az üveg felületén,[3] aminek köszönhetően 0,8-1 milliméter vastagságú lapok látták el a kijelző védelmet.[4] Habár ellenállóbb lett az üveg anyaga, de továbbra is törékeny volt erős behatásra. Egy 2012-es felmérés szerint a javításra szoruló táblagépek 90%-a leesés következtében hibásodik meg és 30%-ban az üvegfelület sérül.[5] A Corning 2012-ben bejelentett egy új hajlékony üveget, amely lehetővé teszi a rugalmas készülékek tervezését. Az anyag vastagsága mindössze 0,1 milliméter (nagyjából olyan vastag mint egy írólap).[6] Az eljárás lényege, hogy az üvegtáblákat 400 fokos káliumsóoldatba merítik. Az eljárás során a kisebb nátriumionok elhagyják az üveget, és a helyüket káliumionok veszik át és így rugalmas lesz.