Számítógépes folyamatirányítás

Slides:



Advertisements
Hasonló előadás
Számítógépes folyamatirányítás. Alapfogalmak Ipari gyártási folyamatok és technológiai rendszerek számítógépes vezérlését, irányítását és felügyeletét.
Advertisements

Perifériák Készítette: Friss István Dávid. A perifériák csoportosítása Bemeneti (Input) eszközök Kimeneti (Output) eszközök Be-és kimeneti (I/O) eszközök.
Szabadtéri rendezvények. A TvMI vonatkozik: OTSZ szerinti szabadtéri rendezvényekre szabadtéri rendezvény: az 1000 főt vagy az 5000 m 2 területet meghaladó,
Irattári és levéltári funkciók a tanúsított szoftverekben Vágujhelyi Ferenc.
Követelményelemzés – követelményspecifikáció A szoftverfejlesztés kapcsán az elemzés speciálisan egy kezdeti szakaszt jelöl, amelynek alapvető feladata.
Schubert TamásSzámítógép-hálózatokLAN kapcsolás /1 Készítette: Schubert Tamás (BMF) LAN kapcsolás (Ethernet)
A szoftver mint komplex rendszer (folyt.) A SunTone módszertan 3 dimenziós osztályozási sémája kifinomultabb osztályozást tesz lehetővé.
Az IKER önértékelő IKER társadalmasítás workshop Budapest, április 12.
Manhertz Gábor; Raj Levente Tanársegéd; Tanszéki mérnök Budapesti Műszaki és Gazdaságtudományi Egyetem Mechatronika, Optika és Gépészeti Informatika Tanszék.
1 Az önértékelés mint projekt 6. előadás 1 2 Az előadás tartalmi elemei  A projekt fogalma  A projektek elemei  A projekt szervezete  Projektfázisok.
BINARIT TIMESHEET Több, mint munkaidő nyilvántartás Virág Zsolt (BINARIT Informatikai Kft.)„Hogyan legyek milliomos?” konferencia – BKIK ( )
TARTALOM BREVIÁRIUM – RÖVID MAGYARÁZATOK NÉGY ESZKÖZ BERUHÁZÁSTERVEZÉS ÉS -MENEDZSMENT Bevezetés Főszereplők Az eszközök Tanulság ESZKÖZÖK és ERŐFORRÁSOK.
Dr. Szűcs Erzsébet Egészségfejlesztési Igazgatóság Igazgató Budapest, szeptember 29. ÚJ EGÉSZSÉGFEJLESZTÉSI HÁLÓZATOK KIALAKÍTÁSA ÉS MŰKÖDTETÉSE.
AZ ELEKTRONIKUS KÉPZÉS MINŐSÉGBIZTOSÍTÁSA INFORMATIKA A FELSŐOKTATÁSBAN DEBRECEN DR. ZÁRDA SAROLTA GÁBOR DÉNES FŐISKOLA.
A biztos befektetés Szabó Gábor Brand manager IBM Magyarország Budapest,
Informatikai rendszerek általános jellemzői 1.Hierarchikus felépítés Rendszer → alrendszer->... → egyedi komponens 2.Az elemi komponensek halmaza absztrakciófüggő.
Iskolai információs rendszer. Alapkövetelmények Oktatási, nevelési intézmények részére fejlesztett Oktatási, nevelési intézmények részére fejlesztett.
TEROTECHNOLÓGIA Az állóeszközök újratermelési folyamata.
Alaplap.
Gazdasági informatika - bevezető
Számítógépes Folyamatirányítás
Számítógépes szimuláció
Nagyméretű állományok küldése
A szerkezetátalakítási programban bekövetkezett változások
Adattárház fejlesztés módszertani tapasztalatok a HIFI-ben
3. tétel.
Gyűjtőköri szabályzat
Vezetékes átviteli közegek
Sínrendszerek Rontó Péter.
Az Internet megismerése
Számítógépes hálózati alapismeretek - vázlat
HUNTÉKA Integrált Könyvtári (Közgyűjteményi) Rendszer
Szupergyors Internet Program (SZIP) Jogi akadálymentesítés megvalósítása: Jogalkotással is támogatjuk a fejlesztéseket dr. Pócza András főosztályvezető.

Kockázat és megbízhatóság
Balaton Marcell Balázs
Az integrált áramkörök (IC-k) típusai és tervezése
LabVIEW bevezetéstől a feszültség-áram karakterisztikáig Vida Andrea
Hálózati architektúrák
Downstream Power Back Off (DPBO)
Operációs rendszerek.
Követelményelemzés Cél: A rendszer tervezése, a feladatok leosztása.
Szervezetfejlesztés II. előadás
„B” komponens Az SZTE informatikai infrastruktúrájának fejlesztése
A PDCA elv alkalmazása az információvédelmi irányítási rendszerekben 1
Downstream Power Back Off (DPBO)
A Hálózat és Az internet
Számítógépes Hálózatok
CONTROLLING ÉS TELJESÍTMÉNYMENEDZSMENT DEBRECENI EGYETEM
Tájékoztató az Önkormányzati ASP Projektről
Számítógépes szimulációval segített tervezés
Informatikai gyakorlatok 11. évfolyam
Munkanélküliség.
Mobilkommunikáció Eszközök és hálózatok
A villamos installáció problémái a tűzvédelem szempontjából
Környezeti Kontrolling
Új pályainformációs eszközök - filmek
Oracle Adatbázisok kezelése c#-ban
Felszín alatti vizek kémiai állapotfelmérése
Sigfox technológia és hálózatok
A számítógép története
SZAKKÉPZÉSI ÖNÉRTÉKELÉSI MODELL I. HELYZETFELMÉRŐ SZINT FOLYAMATA 8
I. HELYZETFELMÉRÉSI SZINT FOLYAMATA 3. FEJLESZTÉSI FÁZIS 10. előadás
Tájékoztató az EPER pályázati folyamatáról
Áramlástan mérés beszámoló előadás
Az MKET új stratégiája – Szolgáltató MKET
A dolgozói teljesítménymérés gyakorlata a százhalombattai Hamvas Béla Városi Könyvtárban Hamvas Béla Pest Megyei Könyvtár Minőségirányítási szakmai nap.
Algoritmusok.
Hagyományos megjelenítés
Az operációs rendszer definíciója
Előadás másolata:

Számítógépes folyamatirányítás

Alapfogalmak Ipari gyártási folyamatok és technológiai rendszerek számítógépes vezérlését, irányítását és felügyeletét jelenti a mikroprocesszorok megjelenésével kezdődött fontosabb elemei: intelligens távadók, érzékelők, digitális szabályozók ipari számítógépek, PLC-k, PXI-k, stb. számjegyvezérlésű szerszámgépek (NC, CNC), megmunkáló központok, robotok, robotkarok a megvalósítást valós idejű (Real-Time) számítógépes rendszerek és osztott intelligenciájú, hierarchikus (DCS) rendszerek teszik lehetővé

Valós idejű (Real-Time) rendszerek Olyan rendszerek, amelyek specifikációjában valamilyen időbeli viselkedésre vonatkozó előírás szerepel a külső, valós időskálához kötötten. Jellemzők: a válaszidők soha sem haladhatják meg a számukra meghatározott időkorlátot a számítógép az adatokat időlépték szerint gyűjti: a gyorsabb folyamatokról sűrűbb mintavételezéssel, míg a lassúbb folyamatokról ritkább mintavételezéssel történik az adatgyűjtés a számítógép a folyamattal A/D, D/A és digitális interfészeken keresztül tart kapcsolatot ha a számítógép a rendelkező jel kiadásával a folyamatba is beavatkozik, akkor a folyamat időléptékéhez kell igazodnia

Intelligens távadók Képesek az érzékelt fizikai mennyiségek szabványos analóg villamos mennyiségekké alakítani (0 – 10 V vagy 4 – 20 mA) és ezeket közvetlenül vagy az ipari kommunikációs hálózaton (Hart, CAN, Profibus, Profinet, stb.) keresztül továbbítani.

Digitális PID szabályozók analóg átmeneti függvény kimenet digitalizálva (n-re) kimenet digitalizálva (n-1-re) a kettő különbségéből kimeneti algoritmus

Mérésadatgyűjtő rendszerek

A rendszer feladata: Mérés, adatgyűjtés Kiértékelés Döntéshozatal Beavatkozás Dokumentálás Archiválás Folyamatállapot vizualizálás (ember-gép kapcsolat, HMI, SCADA rendszer)

Korszerű mérésadatgyűjtők PC-hez csatlakoztatható mérőmodulok PC-LAB modulok NI DAC modulok Pont-pont összeköttetésre alkalmas célműszerek Távmérési eszközök hálózati kommunikációs csatlakozással SCADA rendszerek programozható mérésadatgyűjtők gépi kódban assembly nyelvben magas szintű programozási nyelven grafikus, menürendszeres megjelenítés: mérőrendszerek vezérlésére szakosodott programok: LabView, Test Point, Visual Designer

LabView NI DAQ adatgyűjtő rendszer LabView rendszer: teljesen grafikus programozáson alapuló, virtuális műszerezettséget szimulálni tudó, mérő és adatgyűjtő rendszer Alkalmazási területei: a virtuális műszerek tervezése, kialakítása, jelkondicionálás adatgyűjtő rendszerek tervezése és kialakítása, (DAQ) valós idejű folyamatok kezelése (Compact RIO) gépi látás szabályozó modulok (PID and Fuzzy Controll Modul)

NI DAQ adatgyűjtő rendszer NI DAQ adatgyűjtő egységek kapcsolata a PC-vel: PCI, PCI Express, PXI, PCMCIA, USB, WLAN, Ethernet NI DAQ adatgyűjtő rendszer elemei: érzékelők és átalakítók jelkezelés, jelkondicionálás DAQ hardver modul(ok) Eszközkezelők és szoftvermodulok FGPA modulok Compact RIO

PXI mérésadatgyűjtő számítógép

Compact RIO rendszer

SCADA rendszerek (Supervisory Control and Data Acquisition) Feladata: A jelek összegyűjtése az érzékelőktől A begyűjtött információk feldolgozása Adatbázisok létrehozása Folyamatok felügyelete Microsoft op. rendszerekkel együttműködve dolgoznak (Win2003, ODBC, OPC, SQL) Felügyeleti szoftver IBM kompatibilis PC-ken. Folyamatirányítást nem végez, (az a PLC feladata) csak vizualizálási és beavatkozási lehetőséget biztosít Támogatja a kliens-szerver felépítést

Tartály folyadékszínt felügyeleti rendszer

webSCADA rendszer

SCADA elemek

OPC szerver Összekapcsolja a folyamatirányító rendszert a PLC-kel Más eszközök PLC1 PLC2 ………. Összekapcsolja a folyamatirányító rendszert a PLC-kel Szerver és kliens egy számítógépen Kezeli az adatbázist Valósidejű adatgyűjtés Grafikus megjelenítést biztosít Diagnosztikai funkciókat is ellát

Osztott intelligenciájú (decentralizált) rendszerek – DCS (Distributed Control System) Ötödik generációs irányítási rendszer Az irányítási feladatokat egymással kommunikációs kapcsolatban lévő számítógépek végzik, amelyek bizonyos szintű hierarchiát alkotnak Egy-egy számítógép feladata jól meghatározható A technológia közvetlen közelében vannak A vezérlési adatokat hagyományos vagy intelligens (SMART) távadóktól kapják Feldolgozzák, kiértékelik ezeket az adatokat és továbbítják a központi adatbázis felé. Sok esetben az irányításhoz szükséges alapadatokat szintén egy központi adatbázistól kapják. Redundancia biztosítása

Három szinten történő kommunikáció Alsó színt (Device Level): terepi buszrendszer (ASI, DEVICENET) Érzékelők jeleinek valós idejű feldolgozása, valamint a beavatkozó jelek kiadása Középső színt (Control Level): Automatizálási színt PLC-k, CNC-k, és digitális szabályozók közötti kapcsolat (MODBUS, PROFIBUS kapcsolat) Felső színt: Gyártással kapcsolatos információfeldolgozás (OPC) Irányítást felügyelő mérnöki állomások (SCADA) ETHERNET hálózaton kapcsolódnak

Háromszintű irányítórendszer Adatbázis szerver WEB szerver Felügyeleti állomás PC állomások ETHERNET hálózat Mérnöki munka- állomás Operátormunka- állomás Kapcsolati interfész (PROXI) Terepi busz (pl. PROFIBUS) PLC1 Folyamatirányító1 PLC2 Folyamatirányító 2 ASI-bus F O L Y A M A T

Fisher

VALÓS IDEJŰ IPARI ETHERNET KOMMUNIKÁCIÓS RENDSZEREK

Ipari vezérlők közötti ETHERNET kapcsolat lehetősége Az ipari vezérlőeszközök különleges, valós idejű kommunikációs körülményeket igényelnek A hagyományos ETHERNET, a buszon kialakuló ütközések miatt képtelen a valós idejű adattovábbításra

Irodai Ethernet 1976 Robert Metcalf ötlete alapján indul 1983-ban szabványosították IEEE802.3 10, 100, 1000 Mb/s, 10 Gb/s hálózatok 1997 IEEE802.11 WLAN protokoll CSMA/CS protokoll szerinti hozzáférés OSI modell kontra TCP/IP modell 7 réteg (OSI), 4 réteg (TCP/IP) Szabványos keretformátum IEEE802.3 keret Ethernet II keret

OSI és TCP/IP modellek és protokolljai

IEEE802.3 keretformátum Előtag: 7 bájtnyi 1 és 0; Kerethatároló: 1 bájton ua. csak az utolsó bit is 1 Célcím/Forráscím: a cél- illetve a forrásállomás MAC címe; Adathossz: megmutatja, hogy az adatmező hány bájtból áll; Adatok: a küldött/fogadott adatmennyiség; Ellenőrző összeg: kerethibát hivatott felderíteni.

Követelmények egy ipari Ethernettel szemben Az Ethernet szabvány szerinti nyitottság megőrzése Full duplex kommunikáció Ciklikus működés biztosítása Valós idejű kapcsolatok támogatása Biztonságos adatátvitel 100 %-os IT kompatibilitás Diagnosztizálási lehetőségek Szinkronizálás biztosítása az ezt megkövetelő folyamatok számára A már meglévő terepi buszrendszerek egyszerű integrálhatósága

Fontosabb ipari Ethernet rendszerek és gyártóik Modbus/TCP (Schneider Electric) Ethernet/Ip (Rockwell) Ethernet Powerlink (Bernecker & Rainer ) Profinet (Siemens) EtherCAT (Beckhoff) Sercos III (Sercos Interfaces)

ETHERNET Powerlink Fontosabb jellemzői: IEEE 802.3 szabványra épül A nyitottság megőrzése mellett valós idejű, determinisztikus adatátvitelt biztosít Időkritikus adatok továbbítása gyors és pontos ciklusokkal Ciklusidő akár 200 μs Az állomások nagypontosságú szinkronizálása 1 μs-os szinkronizálási lehetőség Nem valós idejű adatok továbbítása aszinkron csatornán keresztül

Időrések kialakítása a ciklusidőn belül Szinkron fázisban: minden állomás rögzített szélességű időablakot kap (1, 2, ..n, EPL azonosítóval). Aszinkron fázisban: hagyományos IP alapú kommunikáció és címzési mód (IP cím). Valós idejű adatok küldésekor egy időben legfeljebb két állomás férhet hozzá a hálózathoz

A sávszélesség optimalizálása multiplexeléssel Azok az állomások amelyek magasabb ciklusidővel is megelégednek, azonos időréseken osztoznak. (4-11 állomások)

PROFINET Szabványos (IEC 61158 és IEC 61748) nyílt ipari ETHERNET hálózat. (Siemens technológia) Felhasználja az IT technológia előnyeit: Szabványos hálózati elemek és csatlakozók (hub, switch, stb) Alacsony telepítési költségek, kevesebb mérnöki munka Biztosítja a decentrális terepi eszközök RT és IRT kommunikációját Hálózati diagnózis lehetősége Biztonságos kommunikáció

A PROFINET rendszer elemei POFINET CBA Komponens alapú, programozható folyamatok és technológiák közötti NRT és RT kommunikáció POFINET I/O Terepi eszközök és vezérlők I/O csatornáinak ETHERNET alapú RT és IRT kapcsolata

PROFINET alkalmazási területei NRT RT IRT FOLYAMAT AUTOMATIZÁLÁS GYÁRTÁS AUTOMATIZÁLÁS MOTOR VEZÉRLÉSEK TCP/IP <100 ms <10 ms <1 ms Real-Time IEEE 802.3 szabvány szerinti TCP/IP, UDP/IP protokollok használata Real-Time és Isochronous Real-Time adatátvitel MAC cím szerinti azonosítás vagy IP címzési lehetőség

Válaszidők szerinti eloszlás IRT RT TCP/IP 1 10 100 ms IRT alkalmazás, kevesebb mint 1 ms-os válaszidővel, akár 1 μs-os szinkronizálással RT alkalmazások < 10 ms-os válaszidőkkel, alacsony eloszlással TCP/IP alapú, 100 ms körüli válaszidők nem valós idejű alkalmazásokhoz, magas eloszlással

PROFINET I/O rendszer elemei I/O kontroller - PLC, a vezérlési programmal I/O eszköz - Terepi eszköz (pl. szelepvezérlő) I/O supervisor - Programozó és/vagy diagnosztizáló eszköz

Kommunikációs kapcsolatok Kapcsolatmenedzselés Alkalmazás reláció (AR) Kommunikációs reláció (CR) Record Data CR (nem ciklikus, pl. konfigurálás, lekérdezés), IO Data CR (ciklikus, be- és kimeneti adatok továbbításakor), Alarm Data CR (hibaesemények alkalmával).

Küldési idő = küldési tényező * 31,25 μs IO Data CR jellemzői Ciklikus adattovábbítás Küldési idő = tRT + tRTA + tNRT + tfenntartás Alap időegység = 31,25μs Küldési tényező (1-128-ig, k = 32 → küldési idő =1ms) Küldési idő = küldési tényező * 31,25 μs Osztási tényező = (2n) Frissítési idő = 2n∙ t küldési idő (1, 2, 4, 8,…ms)

OSI modell rétegei

A PROFINET és az ISO/OSI modell PROFINET rétegek OSI rétegek 4 Alkalmazási réteg 7 Alkalmazási 6 Megjelenítési Nem használja 5 Viszony 3 4 Szállítási réteg Szállítási 2 3 Hálózati réteg Hálózati 1 1 2 Adatkapcsolati Adatkapcsolati réteg Fizikai A kommunikációs protokoll a hét rétegű OSI modellre épül, amelyből azonban csak az 1., 2., 3., 4. és 7. rétegeket használja /20

A RT csatorna beillesztése az ETHERNET felületre IT alkalmazások PROFINET alkalmazások 1 - HTTP, - SNMP, - DHCP, - ..... - konfigurálás, - diagnosztizálás, - lekérdezések Vezérlési adatok Real-Time protocol TCP/UDP IP 2 3 ETHERNET IEEE 802.3 IRT hardver felület (ASIC) RT IRT 1. NRT osztály: konfigurálási, diagnosztizálási és lekérdezési feladatokra 2. RT osztály: megszakításos és ciklikus adatok és hibajelek továbbítására 3. IRT osztály: 1 ms-nál rövidebb válaszidejű alkalmazásokhoz, főként hajtásszabályozási (motion control) feladatokra

PROFINET Real-Time keret IEEE 802.3 szabvány szerinti keretformátum: Preamble SFD Dest. Addr. Source Addr. Lenght DATA CRC 7 Byte 1 Byte 6 Byte 6 Byte 2 Byte 46-1500 Byte 4 Byte VLAN keretforma, 2x2 bájt kiegészítés (IEEE802.1Q) - prioritás (3 Bit, 0-7 színt); 6 vagy 7 az RT kereteknek - ether-type 0x8100: VLAN protokoll azonosító (2 Byte) - VLAN ID (12 Bit + 1 Bit CFI, CFI=0 Ethernet, CFI=1 Token ring) Ether-type azonosító a PROFINET RT keretnek - 0x0800: TCP/IP - IT kommunikáció - 0x8892: PROFINET RT kommunikáció Frame ID – RT kerettípus, pl. ciklikus, nem ciklikus, alarm típusú Státuszinformációk (pl. data status, 5. bit=1, nincs hiba, vagy ) Pream. SFD Dest. Source VLAN Ether- Frame DATA Cycle Data Transf. CRC tag type ID cnt. status status 7 B 1 B 6 Byte 6 Byte 4 Byte 2 Byte 2 Byte 40-1440 Byte 2 Byte 1 Byte 1 Byte 4 B

IRT kommunikáció időosztása A kommunikáció kizárólag egy hálózati szegmensen belül történik A busz ciklus két fázisra oszlik: IRT (piros) és NRT (zöld) intervallumok Az IRT fázis időtartama a követelményektől függően skálázható Az IRT fázis előtt valósul meg a ciklusok szinkronizációja

Az IRT adatok prioritása Az IRT adatok mindig prioritást élveznek a számukra fenntartott sávban A ciklus kezdetekor, a kommunikáció alapjául szolgáló IRT kapcsoló mindig szabad sávot biztosít a szigorúan időkritikus adatoknak

A kerettovábbítási sorrend meghatározása Csúszó ablakos kerettovábbítás két IRT eszköz esetén különböző sorrendben TF – kerettovábbítási idő, függ a keret nagyságától és az átviteli sebességtől (bitsebesség), TD – az IRT eszközök hálózati kapcsolóinak késleltetési ideje (≈3μs), TM – a közeg (kábel) késleltetési ideje (5ns/m), TCT –az IRT ciklusidő, N – az IRT eszközök száma. Megjegyzés: a keretek közötti 12 bájtnyi rést (Interframe Gap) elhanyagoljuk.

A ciklusidő meghatározása (α > 0) ha α > 0; a keretidő a meghatározó (N > 1) ha α > 0 → Optimális ciklusidő: α = 0; → TF = TM + TD

Az átviteli sebesség növelésének hatása (α < 0) Optimális átviteli sebesség minimális keretnél: α = 0; TM = 0,5μs (100m távolság); TD = 3μs TF = TM + TD = 3,5μs (kerettovábbítási idő) Minimális 64 bájtos keretnél:146,3Mbps α < 0; a kerettovábbítási időt főleg a közeg és az eszközök késleltetési ideje határozza meg:

A keretterhelés hatása Az IRT keret felépítése Keretterhelési tényező (Frame Payload Factor): dDATA >= 36 bájt – az IRT felhasználói adat dFRAME – a keret mérete bájtban; FPF = 56%; amikor dDATA = 36 bájt FPF = 98%; amikor dDATA = 1490 bájt Felhasználva az előzőeket, kapjuk, hogy dDATA > 36 bájt esetén: b = 100Mbps

A keretterhelés hatása 100Mbps-os Ethernet hálózatban, 100m-es szegmensek esetében: TM = 0,5μs és TD = 3μs, a felhasználói adatok: dDATA >36 bájt, az IRT ciklusidő meghatározására alábbi összefüggést használhatjuk:

Számítási eredmények A szürke tartományában lévő ciklusidő értékek gyakorlatilag nem használhatóak IRT adatátvitelre, mert meghaladják a maximálisan lefoglalható IRT sáv méretét (500μs). A 250μs-ot meghaladó értékek is csak bizonyos korlátozások mellett alkalmazhatóak.

Alkalmazás Siemens Profinet IRT rendszer konfigurálása Pl. Simens S7-300, CPU319 PN/DP kontroller és N = 8 IRT eszköz Tudni szeretnénk, milyen ciklusidőt kell beállítani

Az IRT ciklus konfigurálása (Siemens S7) Következtetések 8 darab IRT eszköz, a vezérlési adatok nagysága 64 bájt, a táblázat alapján kapjuk, hogy a ciklusidő minimális értéke 62,38μs. beállíthatunk 75μs-os IRT ciklust, 75μs tartalék intervallummal a nyílt intervallum 250μs a teljes busz ciklusidő 500μs. A TCP/IP kommunikáció számára fennmaradó mintegy 360μs idő alatt kb. 4,4 megabájtnyi egyéb adat is továbbítható.

Az EtherCAT rendszer jellemzői - rövid ciklusidő (≤ 1ms) zavarmentes kommunikáció nagy pontosságú szinkronizáció (jitter < 1μs) korlátlan számú IO eszköz (max. 65535) 100 Mbps full duplex Ethernet hálózat „menet közben” adatcsere rövid, 1,35μs-os IO eszköz késleltetési idő korlátlan (max. 60 kbájt) adatmennyiség busz, csillag, fa, vegyes topológia /13

EtherCAT adattovábbítás Változó hosszúságú telegramok Adatfogadás és küldés „menet közben” ASIC (Application Specific Indegrated Circuit) /13

Az EtherCAT kommunikációs protokoll Keretazonosítás: EtherType 0x88A4 EtherCAT fejléc: keret hossza (telegramok száma), adattípus (ciklikus, alarm) Több telegram egy keretben Azonosítás telegramonként (HD) Telegram ellenőrzés: working countor (WC) Maximális keretméret: 1518 bájt + 8 bájt (Preambulum+SFD) + 12 bájt IFG /13

A keretterhelés meghatározása Hány telegram fér el egy keretben? k = N (IO eszközök száma) és keretméret 64 bájt (minimális) ha: N(12 + Data) ≤ 44 bájt; (nem jellemző) k = N és az összes telegram elfér egy keretben, 44 bájt < N(12 + Data) ≤ 1498 bájt; keretek száma: nF = 1 k < N, több keret szükséges; a keretek száma: /

A minimális ciklusidő A három esetnek megfelelően: k = N és keretméret 64 bájt, N(12 + Data) ≤ 44 bájt, teljes keretméret 84 bájt; k = N, 44 bájt < N(12 + Data) ≤ 1498 bájt, (nF = 1) 40 bájt a fejléc + Preambulum + IFG, összesen 320 bájt; k < N, több keretes továbbítás; b a bitsebesség (100/1000Mbps), tD eszköz késleltetési idő (1,35/0,85μs), tM a közeg késleltetése (5ns/m, max. 0,5μs/100m) /

Profinet IRT – EtherCAT összehasonlítás a) Eszközvezérlők száma szerint 16bájt/100Mbps 16bájt/1Gbps

Profinet IRT – EtherCAT összehasonlítás b) Keretterhelés szerint 16bájt/100Mbps 100Mbps 16bájt/1Gbps 1Gbps