Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

ELVÁLASZTÁSTECHNIKAI MÓDSZEREK ELMÉLETE ÉS GYAKORLATA Dr. Kremmer Tibor VII. FOLYADÉKKROMATOGRÁFIÁS MÓDSZEREK HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA EÖTVÖS.

Hasonló előadás


Az előadások a következő témára: "ELVÁLASZTÁSTECHNIKAI MÓDSZEREK ELMÉLETE ÉS GYAKORLATA Dr. Kremmer Tibor VII. FOLYADÉKKROMATOGRÁFIÁS MÓDSZEREK HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA EÖTVÖS."— Előadás másolata:

1 ELVÁLASZTÁSTECHNIKAI MÓDSZEREK ELMÉLETE ÉS GYAKORLATA Dr. Kremmer Tibor VII. FOLYADÉKKROMATOGRÁFIÁS MÓDSZEREK HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA EÖTVÖS LORÁND TUDOMÁNY EGYETEM Budapest – 2013

2 HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA HYDROPHOBIC INTERACTION CHROMATOGRAPHY (HIC)

3 1971 Affinitási kromatográfiás tölteteknél spacer alkalmazásakor zavaró másodlagos kölcsönhatásokat figyelnek meg 1972 Shaltiel Hydrophobic Chromatography Spacer-ligandumként, agaróz hordozóra alkilaminokat alkalmaz 1973 Hjerten Hydrophobic Interaction Chromatography Porath Hydrophobic Salting-out Chromatography Kozmotróp sók adagolásával a fehérjék retenciója nő Hoftsee Hydrophobic Adsorption Chromatography A ligandum szénláncának növelése és sűrűségének csökkentése növeli az eljárás felbontóképességét 1976 Morris HIC (Trends Biochem Sci.) HPLC töltetek 5-10  m szemcseméret (analitikai)  m szemcseméret (preparatív), pórusméret növelése (300Å) 1986 Nem porózus töltetek (1-3 um) 1991Perfúziós töltetek (200 és nm pórus) TÖRTÉNETI ÁTTEKINTÉS

4 HIDROFÓB KÖLCSÖNHATÁSÚ FOLYADÉKKROMATOGRÁFIA (HIC) spacer ligandum matrix (domain) protein

5

6 HIDROFÓB KÖLCSÖNHATÁSÚ FOLYADÉKKROMATOGRÁFIA (HIC) KÜLÖNBÖZŐ LIGANDUMOK HATÁSA A RETENCIÓRA (Gooding et al. 1984) OH-Propil → Propil → Benzil → i-Propil → Fenil → Pentil  a retenció növekedése 

7 KÜLÖNBÖZŐ ANIONOK ÉS KATIONOK HATÁSA A HIDROFÓB KÖLCSÖNHATÁSRA PO ~ SO ~ CH 3 COO - ~ Cl - ~ Br - ~ NO 3 - ~ CIO 4 - ~ SCN - növekvő besózó - csökkenő kisózó hatás növekvő kaotrop - csökkenő kozmotrop hatás NH 4 + ~ Rb + ~ K + ~ Na + ~ Cs + ~ Li + ~ Mg 2+ ~ Ca 2+ ~ Ba 2+ Phenyl-Superose, Pharmacia, Uppsala

8 HUMÁN SZÉRUM SAVANYÚ ALFA-1-GLIKOPROTEIN (AGP) ÉS ALFA-1-ANTITRIPSZIN (AAT) ELVÁLASZTÁSA ÉS TISZTÍTÁSA HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIÁVAL Fractogel EMD Propyl oszlop (10x1 cm,  m) Eluens A – 20 mM Na-foszfát, pH : 7,2 1,1 M NH 4 -szulfát Eluens B - 20 mM Na-foszfát, pH : 7,2 Lineáris gradiens elúció Áramlási sebesség : 1 mL/perc Detektálás : 278 nm (Oláh, Kremmer, Boldizsár, J. Chromatogr. 2000) (NH 4 ) 2 SO 4 1,5 M

9 (NH 4 ) 2 SO 4 M REFERENCIA FEHÉRJÉK ELVÁLASZTÁSA HIDROFÓB KÖLCSÖNHATÁSÚ FOLYADÉKKROMATOGRÁFIÁVAL

10 HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA FEHÉRJÉK OVALBUMINRA VONATKOZTATOTT RELATIV RETENCIÓK PROTEINRRT Cytochrome C0.59 Myoglobin0.73 Ribonuclease A0.76 Haemoglobin0.91 Albumin (human)0.94 Ovalbumin1.00 Trypsinogen1.02 Transferrin1.07 Lysozyme1.08 Albumin (bovine serum)1.11 α-Chymotrypsinogen A1.12 Pepsin1.15 Trypsin inhibitor1.23

11 Hydrophobic Interaction Chromatography of Proteins Column A: Progel-TSK Butyl-NPR, 3.5cm x 4.6mm ID, 2.5μm particles Column B: Progel-TSK Phenyl-SPW,7.5cm x 7.5mm ID, 10 μm particles Column C: ProgeI-TSK Ether-5PW, 7.5cm x 7.5mm ID, 10 μm particles Samples: 1. Myoglobin, 2. Ribonuclesae, 3. Lysozyme, 4.  -Chymotrypsin, 5.  -Chymotrypsinogen Mobile Phase: A - 0.1M phosphate buffer, pH 7.0 and 2.3 → 0M ammonium sulfate (12 min) B - C = 0,1M phosphate buffer, pH 7.0 and 1.8 → 0M ammonium sulfate (60 min) Flow rate: 1mL/min; Temp.: 25 0 C; Detection: UV 280 nm

12 1 - Kis sókoncentrációk - ionos kölcsönhatások - stabilizálás 2 - Nagy sókoncentrációk - speciális kölcsönhatások, kozmotróp sópárok, pl. (NH 4 ) 2 SO 4 - stabilizálás, majd kicsapódás,  hidrofób kölcsönhatások A HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA ALAPJAI A FEHÉRJÉK SZORPCIÓJA ÉS RETENCIÓJA II. SÓK HATÁSA A FEHÉRJÉK OLDÓDÁSÁRA

13 HIC - TERVEZÉS

14 A HIDROFÓB KÜLCSÖNHATÁSÚ (HIC) ÉS FORDÍTOTT FÁZISÚ KROMATOGRÁFIA (RPC) ÖSSZEHASONLÍTÁSA Mindkét technikában közös és jellemző: - Az álló fázis a hordozóra kötött apoláris ligandum. - A szorpció oka a hidrofób (apoláris) kölcsönhatás. - A retenciót döntő módon a hidrofóbicitási viszonyok határozzák meg. - Mindkét technika alkalmas a fehérjék elválasztására.

15 A HIDROFÓB KÖLCSÖNHATÁSÚ (HIC) ÉS A FORDÍTOTT FÁZISÚ KROMATOGRÁFIA (RPC) KÜLÖNBSÉGEI - A HIC liganduma gyengébben apoláris, kisebb a felületi koncentrációja. -A HIC esetén sokkal gyengébb a szorpció, a fehérje natív formában (folded) marad, kisebb a denaturáció esélye. -A RPC esetében az erős szorpció megszüntetheti az eredeti struktúrát (unfolding), itt a retenciót elsősorban az elsődleges szerkezet hidrofób jellege határozza meg. - A RPC esetében a fehérje spontán kötődik a ligandumhoz. Az elúciót szerves oldószer adagolása okozza. - A HIC esetében a fehérje kötődése a tölteten és a retenció mértéke a kozmotróp só adagolásával érhető el. Az elúció a só negatív koncentráció gradiensének eredménye. -A RPC esetében a hidrofób kölcsönhatásért döntően az álló fázis (ligandum) felelős, -a HIC esetében az áramló fázis (eluens) a domináns tényező

16 A fehérjék fiziológiás körülmények (pH, ionerősség) között harmadlagos ill. negyedleges szerkezettel (folded) rendelkeznek. A fehérjék apoláros karakterű aminosav összetevői (Ala, Val, Leu, Tyr, Trp, Phe) a szerkezet belsejébe törekszenek, egy részük azonban a felületre kényszerül (hydrophobic patch). Ez kb. a felület 40%-át képezi, és fontos funkcionális szerepe van a fehérje biológiai aktivitásában. Frank és Evans (1945) feltételezték, hogy vizes oldatokban a víz molekulái un. "icebergs" formában fedik a hidrofób felületeket. Némethy és Sheraga (1962) szerint két hidrofób anyag vizes oldatban létrejövő kapcsolata során a víz jégszerű struktúrája mintegy feloldódik és dezorganizálódik (entrópia nő – az energia felszabadulás fedezi az asszociáció energiaigényét) Vizes oldatokban ezek az erők stabilizálják a fehérjék natív szerkezetét. A fehérjék a vizes (fiziológiás) közegben általában jól oldódnak (stabilak) és nem törekszenek hidrofób kapcsolatokra. A HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA ALAPJAI A FEHÉRJÉK SZORPCIÓJA ÉS RETENCIÓJA I. FEHÉRJÉK "VIZES" KÖZEGBEN

17 Melander és Horváth (1977) SZOLVOFÓB ELMÉLET - Az oldódás során az oldószer az oldandó anyagot befogadó üreget (cavity) képez. - Az oldhatóság a határfelületi szabadenergia megváltozásának a függvénye, ami az oldószer felületi feszültségétől függ. - Az oldat só koncentrációjának (m) növelésével az oldat felületi feszültsége arányosan változik: V = Vo + c. R. m R - a víz felületi feszültsége c - a só moláris felületi feszültség inkrementuma - c korrelációba hozható a sók (anionok) liotróp sorával (Hofmeister l888). - Az elmélet a hidrofób kromatográfiás gyakorlat számára legegyszerűbb formájában a retenció kifejezésére alkalmas össszefüggést (lnk - m) ad. A kapacitási faktor logaritmusa (lnk) a következő egyenlettel fejezhető ki : ln k = ln k viz + S. m az egyenes tengelymetszete (elvileg) a tiszta vízben mérhető kapacitási faktor logaritmusa. - A konkrét mérések az elmélet számos bizonytalanságára hívják fel a figyelmet. A HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA ALAPJAI A FEHÉRJÉK SZORPCIÓJA ÉS RETENCIÓJA III. SÓK HATÁSA A FEHÉRJÉK OLDÓDÁSÁRA

18 - Egy egyensúlyi rendszerben lévő oldathoz adott komponens megváltoztatja a fennálló egyensúlyt. - Az új komponens nem egyforma mértékben lép kölcsönhatásba a már ott lévő komponensekkel (preferentíal interaction), ezt fejezi ki a preferential interaction paraméter (PIP). - Mérése a szabadentalpia vagyis a kémiai potenciál változásának mérésével lehetséges, ez arányos a felületi feszültség változással. - Megállapították, hogy a kisózószerek (kozmotróp sók) a fehérjék környezetében negatív PIP értékkel bírnak, vagyis kizáródnak a fehérjék közeléből. Ennek eredménye egy többlet hidratáció, amely a fehérje kémiai potenciálját megnöveli végezetül kicsapódáshoz vezet. - A só-fehérje kölcsönhatás két ellentétes hatás eredője: 1. kedvezőtlen felületi feszültség változás 2. kedvező só kötődés A kisózó szerek esetében az első hatás a domináns (egyértékű kationok sói), a besózó szerek esetében a második kompenzálja az elsőt. PREFERENTIAL INTERACTION ELMÉLET Timasheff (1959) Arakawa és Timasheff (1982)

19 A ligandum szerkezetének szerepe az albumin kötödésében a hidrofób kölcsönhatású kromatográfiában

20

21

22

23


Letölteni ppt "ELVÁLASZTÁSTECHNIKAI MÓDSZEREK ELMÉLETE ÉS GYAKORLATA Dr. Kremmer Tibor VII. FOLYADÉKKROMATOGRÁFIÁS MÓDSZEREK HIDROFÓB KÖLCSÖNHATÁSÚ KROMATOGRÁFIA EÖTVÖS."

Hasonló előadás


Google Hirdetések