Mintavételes eljárások 1. előadás Üzleti statisztika Dr. Varga Beatrix
Kontrollált kísérletek végtelen sokaságról való informálódás eszköze arra ad választ, hogy a kísérlet végzője által megtervezett feltétel együttesek (kezelések) milyen eredményre vezetnek.
Reprezentatív megfigyelés A mintavételből származó eredményeket a sokaság egészének jellemzésére használják, azaz általánosítanak a teljes sokaságra. A reprezentatív minta: tükrözi az alap-sokaságot, annak tulajdonságait, össze-tételét. Mindig megadható a mintavételi hiba, azaz, hogy a mintavétel tényéből mekkora hiba fakad.
Nem reprezentatív megfigyelés (egyéb részleges megfigyelés) Nincs benne az általánosításra való törekvés, a következtetések kizárólag megfigyelt egyedekre vonatkoznak.
Véletlenen alapuló kiválasztás módjai
FAE - független, azonos eloszlású minta Homogén és végtelen (nagyon nagy) számosságú sokaságból veszünk mintát visszatevéssel vagy visszatevés nélkül. Hasonló eredményre vezet, ha véges sokaságból egyenlő valószínűséggel visszatevéses mintát veszünk. Gyakorlati alkalmazása: elsősorban a tömegtermelés minőségellenőrzésénél.
EV - egyszerű véletlen minta Homogén és véges elemszámú sokaság esetén alkalmazható. A mintát visszatevés nélkül választjuk ki. Minden lehetséges n elemű minta kiválasztásának a valószínűsége azonos. Hasonló a FAE mintához, de véges és kisebb elemszámú sokaságok esetén inkább ez használatos.
R - rétegzett mintavétel Heterogén sokaság esetén alkalmazható. A fősokaságot valamilyen ismérv szerint átfedés-mentesen homogén rétegekre osztjuk. Az egyes rétegeken belül egymástól függetlenül EV (ritkábban FAE) mintát veszünk. Azonos mintanagyság esetén a vizsgált jellemzőkre (, ) kisebb hibát kapunk, mint az EV mintavétellel feltéve, hogy a rétegezés jó volt.
Egyenletes rétegzés
Arányos rétegzés
Neyman-féle optimális rétegzés nagyobb rétegekből nagyobb mintát vesz a változékonyabb, heterogénebb rétegekből szintén nagyobb mintát vesz
Költség-optimális rétegzés az egyes rétegek szórása mellett figyelembe vesszük az egyes rétegek megfigyelésének költségét is adott költségkeret mellett minimális hibát eredményez
CS - csoportos (egylépcsős) mintavétel Homogén, véges sokaság esetén, ha nem áll rendelkezésre a sokasági elemek teljes listája, de nagyobb csoportokra rendelkezünk listával. Ha a csoportok a koncentráltságuk miatt könnyebben, olcsóbban figyelhetők meg, mint az egyedek. Először a csoportok halmazából EV mintát veszünk, majd az így kiválasztott csoportokat teljes körűen megfigyeljük (pl: iskolások drogfogyasztási szokásai).
TL - többlépcsős mintavétel hasonló esetekben használjuk, mint a csoportos mintavételt itt több lépcsőben jutunk el a végső megfigyelési egységhez leggyakoribb a kétlépcsős először EV mintavétellel kiválasztjuk a csoportokat, majd a csoporton belül is EV mintavételt végzünk
Grafikusan ábrázolva
Nem véletlen mintavételi eljárások 1.Szisztematikus kiválasztás ha n elemű mintát akarunk venni egy N elemű sokaságból, akkor meghatározva a k=N/n lépésközt a k0 véletlen kezdőpontból kiindulva minden k-adik elemet figyeljük meg: k0, k0+k, k0 +2k; … A minta gyorsan és mechanikusan kiválasztható. Egybeeshet az EV megfigyeléssel, ha az elemek felsorolása független a megfigyelés tárgyától.
Nem véletlen mintavételi eljárások 2.) Kvótás kiválasztás 3.) Koncentrált kiválasztás 4.) Hólabda kiválasztás 5.) Önkényes (szubjektív) kiválasztás
Ismételt vagy másodlagos mintavételi eljárások jellemzői Speciális csoport a gyakorlatban alkalmazott mintavételi módok között. Elvi alapja az a felismerés, hogy a tényleges mintavétel igen költséges, míg a számítógép használata egyre olcsóbb! → a meglévő kisebb és olcsóbb mintákat számítógépes módszerekkel megtöbbszörözik. A meglévő mintából újabb mintákat képeznek azért, hogy a mintában lévő információkat jobban kihasználják.
Ismételt vagy másodlagos mintavételi eljárások 1.) Független részminták módszere 2.) Kiegyensúlyozott ismétlések 3.) Jackknife módszer 4.) Bootstrap módszer
Az alapsokaság adatai
Az egyszerű véletlen és a rétegzett minták paramétereinek összehasonlítása
Statisztikai becslés
Statisztikai becslés rétegzett minta alapján Az átlag pontbecslése rétegzett mintából a rétegenként becsült átlagoknak a sokaság nagyságával súlyozott átlaga.
Becslés rétegzett mintából ahol:
Hányados-becslés A „h” mintabeli hányados nem torzítatlan becslő függvénye a sokasági jellemzőnek. Azonban a torzítás mértéke nagy minta esetén elhanyagolható. A becsült érték (hányados) eloszlása nagy minta esetén megközelítőleg normális eloszlást követ.
Független részminták alkalmazása A módszer alapja egy „n” elemű véletlen módszerrel választott minta „k” egyenlő nagyságú részmintára történő felosztása. A már kiválasztott minta utólagos felosztása helyett célszerűbb az ún. ismételt mintavételt alkalmazni. Egy „m” elemű minta kiválasztását hajtjuk végre valamely véletlen módszer alkalmazásával. Ezután függetlenül az előzőtől, azonos módszerek-kel újabb és újabb mintát vételezünk egészen addig, amíg „k” darab egymástól független „m” elemszámú mintánk lesz.
Független részminták alkalmazása
Köszönöm a figyelmet! stbea@uni-miskolc.hu