Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

FRAKTÁLOK. Mi a fraktál? •Olyan ponthalmaz (alakzat), amelyet úgy lehet részekre bontani, hogy minden rész egy kisebb méretű másolata az egésznek (legalábbis.

Hasonló előadás


Az előadások a következő témára: "FRAKTÁLOK. Mi a fraktál? •Olyan ponthalmaz (alakzat), amelyet úgy lehet részekre bontani, hogy minden rész egy kisebb méretű másolata az egésznek (legalábbis."— Előadás másolata:

1 FRAKTÁLOK

2 Mi a fraktál? •Olyan ponthalmaz (alakzat), amelyet úgy lehet részekre bontani, hogy minden rész egy kisebb méretű másolata az egésznek (legalábbis megközelítőleg). •önmagához hasonló •Benoit Mandelbrot ( ) adta a fraktál nevet (fractus - latin), jelentése: szabálytalan, töredezett

3 Önhasonlóság Az alakzat olyan kisebb részekből áll, amely részek hasonlóak az alakzathoz (ezeknél a példáknál ez nem egészen van így )

4 Konstrukció iterációval

5 Példák fraktálokra I. Sierpinski-féle háromszög (1915) (a Cantor-halmaz síkbeli megfelelője) Koch-féle görbe (hópehely): A Cantor-halmaz:

6 Példák fraktálokra II. Mandelbrot halmaz:

7 Mire alkalmazhatók a fraktálok? Alkalmasak bizonyos objektumok leírására, mint pl. felhők, hegyek, növények, amelyek egyszerű geometriai formáknak nem felelnek meg.

8 Példák természetes „fraktálokra”

9 Matematikai „definíció” Fraktál : •Finom struktúrája van •Túl szabálytalan ahhoz, hogy leírható legyen a klasszikus geometriában •Önhasonló (esetleg csak közelítőleg, vagy statisztikusan) •Olyan halmaz, aminek a fraktál dimenziója nagyobb a topológiai (euklideszi) dimenziójánál.

10 Topológiai dimenzió Pont – 0, egyenes – 1, sík – 2, tér - 3 Egy H halmaz topológiai dimenziója (lefedési dimenzió). Egy elszigetelt pontokból álló halmaz dimenziója 0, mert a pontok kellően szűk környezeteit véve semelyik kettőnek nem lesz közös része. Egy vonal dimenziója 1, mert mindig lefedhető kellően kis körökkel úgy, hogy azokat "felfűzzük" a vonal mentén, és egyszerre mindig csak kettő találkozik. Az n-dimenziós euklideszi tér lefedési dimenziója n.euklideszi tér

11 Fraktál dimenzió Tegyük fel, hogy a H halmaz N darab hasonló részből áll, amelyek s-szeres kicsinyítései H-nak.

12 Nem fraktálok dimenziója Pl.: egyenes szakasz Pl.: négyzet N= 2 db hasonló rész s= 2-szeres kicsinyítése az egésznek N= 4 db hasonló rész s= 2-szeres kicsinyítése az egésznek Pl.: kocka N= 8 db hasonló rész s= 2-szeres kicsinyítése az egésznek

13 Fraktálok dimenziója A Koch-féle görbe N= 4 db hasonló rész s= 3-szoros kicsinyítése az egésznek N= 3 db hasonló rész s= 2-szoros kicsinyítése az egésznek A Sierpinski háromszög

14 Feladatok Mekkora a fraktálok dimenziója? N= 8 db hasonló rész s= 3-szoros kicsinyítése az egésznek N= 6 db hasonló rész s= 3-szoros kicsinyítése az egésznek Sierpinski-szőnyeg

15 Mandelbrot-halmaz Azon c komplex számok halmaza, amelyekre a z 0 = 0, z i+1 = z i 2 +c iteráció eredménye nem a végtelenbe konvergál. (|c|=<2) majdnem önhasonló

16 Julia-halmazok Azon z komplex számok halmaza, amelyekre a z 0 = z, z i+1 = z i 2 +c iteráció eredménye nem a végtelenbe konvergál (c itt paraméter, azaz minden c-hez tartozik egy Julia-halmaz). c = 0.75

17 Julia-halmaz II.

18 Julia-halmazok Különféle c értékekre.

19 Fraktál hegyek Osszunk egy háromszöget három rész-háromszögre, mozdítsuk el a középpontokat. Ismételjük meg a folyamatot a rész-háromszögekre, stb. A sík pontjaihoz rendeljünk magassági értékeket annak megfelelően, hogy hány háromszög fedi azokat le; melyik a legkisebb lefedő háromszög.

20 Fraktál hegyek

21 Plazma felhők Hasonló a fraktál hegyeknél alkalmazott módszerhez, csak itt négyzeteket osztunk részekre és a végén nem magassági, hanem fényességi értékeket készítünk.

22 Fraktál növény

23 3D fraktálok Menger-szivacs Térbeli Julia-halmaz Mekkora a dimenziója? 27-a 6 db lapközép kocka-1 db középső kocka= 20


Letölteni ppt "FRAKTÁLOK. Mi a fraktál? •Olyan ponthalmaz (alakzat), amelyet úgy lehet részekre bontani, hogy minden rész egy kisebb méretű másolata az egésznek (legalábbis."

Hasonló előadás


Google Hirdetések