Járművillamosság és elektronika II.

Slides:



Advertisements
Hasonló előadás
TÖMÖRÍTÉS. Fogalma A tömörítés egy olyan eljárás, amelynek segítségével egy fájlból egy kisebb fájl állítható elő. A tömörítési arány függ a fájl típusától,
Advertisements

Szabadtéri rendezvények. A TvMI vonatkozik: OTSZ szerinti szabadtéri rendezvényekre szabadtéri rendezvény: az 1000 főt vagy az 5000 m 2 területet meghaladó,
Szenzorok Ellenállás változáson alapuló szenzorok.
Károly Alexandra és Kocsis Ákos 10.B. Tranzisztorok A legfontosabb félvezetőeszközök: – erősítőként (analóg áramkörökben) – kapcsolóként (digitális áramkörökben)
Manhertz Gábor; Raj Levente Tanársegéd; Tanszéki mérnök Budapesti Műszaki és Gazdaságtudományi Egyetem Mechatronika, Optika és Gépészeti Informatika Tanszék.
Hullámmozgás. Hullámmozgás  A lazán felfüggesztett gumiszalagra merőlegesen ráütünk, akkor a gumiszalag megütött része rezgőmozgást végez.
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA VILLAMOS ENERGIA FAZEKAS ANDRÁS ISTVÁN.
BEST-INVEST Független Biztosításközvetítő Kft.. Összes biztosítási díjbevétel 2004 (600 Mrd Ft)
Számítógépek jellemzői, ügyfél - kiszolgálók jellemzői, számítógépházak, tápegységek elnevezései, funkciói, főbb jellemzői Elmélet 1.
3. tétel.
Vezetékes átviteli közegek
Frekvencia függvényében változó jellemzők mérése
Becslés gyakorlat november 3.
Komplex természettudomány 9.évfolyam
AZ ÁTVITELI CSATORNA.
A számítógép felépítése
Kockázat és megbízhatóság
A KINOVEA mozgáselemző rendszer használata
Kockázat és megbízhatóság
LabVIEW bevezetéstől a feszültség-áram karakterisztikáig Vida Andrea
Kommunikáció a könyvvizsgálatban
RÁDIÓRENDSZEREK Képi jelek Győr.
Az elektromos áram, vezetési jelenségek
 : a forgásszög az x tengelytől pozitív forgásirányában felmért szög
SZÁMVITEL.
Reflexiók, áthallások és az ellenük való védekezés
Kockázat és megbízhatóság
A mozgási elektromágneses indukció
A földrajzi kísérletek szervezése és végrehajtása
Korszerű gyújtórendszerek
Munka és Energia Műszaki fizika alapjai Dr. Giczi Ferenc
 : a forgásszög az x tengelytől pozitív forgásirányában felmért szög
Tartalékolás 1.
Pontrendszerek mechanikája
Az integrált áramkörökben (IC-kben) használatos alapáramkörök
Szerkezetek Dinamikája
Mi a káosz? Olyan mozgás, mely
Automatikai építőelemek 8.
Grosz imre f. doc. Kombinációs hálózatok /43 kép
Regressziós modellek Regressziószámítás.
AZ OKOSHÁZAK BEMUTATÁSA
CONTROLLING ÉS TELJESÍTMÉNYMENEDZSMENT DEBRECENI EGYETEM
Monitor(LCD).
Számítógépes szimulációval segített tervezés
Kalickás forgórészű aszinkronmotor csillag-delta indítása
RUGÓK.
A bipoláris tranzisztor és alkalmazásai
Elektromos alapjelenségek
Ékszíj-, laposszíjtárcsa Kúpos kötések, szorítóbetétek
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
Munkanélküliség.
Készletek - Rendelési tételnagyság számítása -1
Új pályainformációs eszközök - filmek
Rendszerek energiaellátása 10. előadás
TÁRGYI ESZKÖZÖK ELSZÁMOLÁSA
Térvezérelt tranzisztorok FET (field effect transistor)
A számítógép története
Járműtelepi rendszermodell 2.
A szállítási probléma.
Emlékeztető/Ismétlés
Együtt Nyírbátorért Helyi Közösség
A mérés
Az egyén társadalmi integrációja
Ki mit tud?- művészeti nap december 15. szombat
Munkagazdaságtani feladatok
Áramlástan mérés beszámoló előadás
Az impulzus tétel alkalmazása (A sekélyvízi hullám terjedése)
A részekre bontás tilalma és annak gyakorlati alkalmazása
Atomok kvantumelmélete
A talajok mechanikai tulajdonságai III.
Előadás másolata:

Járművillamosság és elektronika II. Erősítő kapcsolások, műveleti erősítők, komparátorok, billenőkörök

Erősítők Alap villamos jellemzők nagylinearitású erősítésére alkalmasak. Csoportosításuk az erősített jellemző alapján: Feszültségerősítők Áramerősítők Teljesítményerősítők Csoportosításuk a be- és kimeneti jelnek egy kitüntetett ponthoz való viszonya alapján: Aszimmetrikus erősítők Szimmetrikus erősítők Szimmetrikus bemenetű, de aszimmetrikus kimenetű erősítők Szimmetrikus ki- és bemenetű erősítők

Aszimmetrikus erősítők

Szimmetrikus erősítők Vezérlési forma lehet: Általános (Ube1 és Ube2 független) Speciális: Szimmetrikus Aszimmetrikus Közös

Tranzisztoros erősítő A tranzisztor elektromos jelek erősítésére kifejlesztett, 2 db PN átmenettel rendelkező aktív áramköri elem. A bipoláris tranzisztor háromelektródás félvezető eszköz, amely NPN vagy PNP elrendezésű, szennyezett félvezető rétegekből áll. A bipoláris tranzisztorokat leggyakrabban feszültségerősítésre használjuk. Egy egyszerű erősítő négypólusnak tekinthető, ezért az egyik kivezetését közösítjük a bemenet és a kimenet között. Háromféle alapkapcsolás hozható létre, amelyek közül a leggyakrabban használt közös emitteres kapcsolást részletezzük. A bemeneti és kimeneti feszültségek és áramok közötti kapcsolatokat a tranzisztor jelleggörbéi szemléltetik. Az erősítő kapcsolások általában feszültségerősítők, ezért alapkövetelmény, hogy a kimeneti feszültség arányos legyen a bemeneti feszültséggel, tehát az erősítő lineáris legyen!

Tranzisztoros erősítő kapcsolások

Tranzisztor karakterisztikák Bemeneti Kimeneti A tranzisztor kivezetéseire jutó feszültségek és a kivezetéseken átfolyó áramok közötti összefüggéseket általában jelleggörbékben adják meg. Ezek közül legfontosabb a bemeneti és a kimeneti jelleggörbe sereg ismerete. Ezek alapján tárgyalhatók pl. a kisjelű erősítők, a kapcsolóüzem, stb. Mivel a kimeneti oldal UCE feszültsége visszahat a bemenetre, ezért meg kell adni, hogy mekkora UCE kollektor-emitter feszültségre vonatkozik a jelleggörbe. Záróirányban a maradékáramot és a letörési feszültséget elegendő ismerni. A kimeneti karakterisztika az állandó bázisáramhoz tartozó kollektor áram változást adja meg az UCE kollektor-emitter feszültség függvényében. Az IB = 0 bázisáramhoz tartozó jelleggörbe a zárási tartományt, az UCB = 0 jelleggörbe pedig a telítési tartományt határolja.

Tranzisztor működése lineáris üzemben A bázis-emitter átmenet nyitóirányban van előfeszítve, azaz mindkét oldal többségi töltéshordozói haladnak a másik oldal irányába. A bázis kollektor átmenet zárt, a kiürített rétegben nagy térerősség uralkodik. Az emitter sokkal jobban adalékolt, mint a bázis, ezért a nyitott pn átmenet áramában az elektronok többségben vannak. A bázisba bekerülő elektronok diffúzióval terjednek tovább, egy részük rekombinálódik. Ha elérik a bázis-kollektor kiűrített réteg határát, a térerősség átsodorja a kollektor oldalra, azaz a kollektor áramot vezet – noha a pn átmenet záróirányban van előfeszítve és csak nagyon kis áramot várnánk.

Tranzisztor működése lineáris üzemben

Tranzisztor működése lineáris üzemben

Tranzisztor munkapont beállítás Munkapont: az eszköz egyenáramú üzemi körülményeit biztosító, összetartozó egyenáram-egyenfeszültség értékek. Grafikusan: a jelleggörbéken összetartozó egyenáram-egyenfeszültség értékpár által meghatározott pont. Munkapont beállítás: a működtetés, vezérlés alapfeltételeként az aktív eszköz bemeneti és kimeneti kapcsaira megfelelő egyenfeszültségek biztosítása. Vezérlés: az egyenfeszültségekkel beállított munkapontú aktív elem bemenetére működtető váltakozó jel kapcsolása. Vezérlés hatására a munkapont mozgást végez a jelleggörbén.

Tranzisztor transzfer jellegörbéje Lineáris tartomány: az aktív elem árama egyenesen arányos a vezérlő feszültség időbeni változásával. Nemlineáris tartomány: az aktív elem árama nem egyenesen arányos a vezérlő feszültség időbeni változásával.

Tranzisztor munkapont beállítás Ez az összefüggés a tranzisztor kimeneti karakterisztikájában egy munkaegyenest határoz meg. A munkapont egy összetartozó IC − UCE értékpár a munkaegyenes mentén, amelyet a bázisárammal lehet beállítani. Ha a bázisáram folyamatos változtatásával a munkapont a normál aktív tartományban jön létre, akkor a tranzisztor lineáris üzemmódban működik. Ismerve a tranzisztor B értékét, a munkapont többféleképpen is beállítható.

Tranzisztor munkapont beállítás Munkaegyenes: az aktív elem kimeneti karakterisztikáján a kimeneti körben mérhető feszültség és a kimeneti áram közötti lineáris kapcsolat grafikus megjelenítését szimbolizáló egyenes. A munkaegyenes meredekségét kizárólag a kimeneti körben elhelyezett ellenállás vagy ellenállások értéke befolyásolja. Bipoláris tranzisztornál a kiinduló egyenlet: UT = IC*RC+UCE Munkaellenállás: dinamikus üzemmódban az aktív elem kimeneti körében elhelyezett ellenállás vagy ellenállások, melynek hatására vezérléskor a kimeneti feszültség változik.

Tranzisztor munkapont beállítás

Tranzisztor munkapont beállítás

Műveleti erősítők A műveleti erősítőket eredetileg analóg számítógépekben használták (a digitális technika előtt). Matematikai műveleteket valósítottak meg velük, ahol a változó a feszültség volt, innen jön a nevük. A műveleti erősítők több erősítőfokozatból álló erősítők. Bemenetükön egy differenciálerősítő található (amelynek erősítése a végtelenhez tart), továbbá rendelkeznek egy kimenettel, és kettős (pozitív és negatív) tápfeszültséget igényelnek.

Műveleti erősítők A hagyományos erősítő tulajdonságait a belső felépítése határozza meg, a műveleti erősítővel (operational amplifier) épült áramkörök működését a külső negatív visszacsatolás határozza meg. Közel ideális tulajdonságokkal rendelkezik, méretben és árban alig tér el a tranzisztoroktól, alkalmazása jóval egyszerűbb

Az ideális műveleti erősítő

Műveleti erősítők Ideális műveleti erősítő tulajdonságai: Szimmetrikus bemenet Aszimmetrikus kimenet Bemeneti ellenállás végtelen nagy, bemeneti áram zérus Kimeneti ellenállás értéke zérus Vezérlőfeszültség nélkül ne jelenítsen meg jelet a kimeneten (ofszet hiba) Szimmetrikus jelekre nézve végtelen nagy az erősítés (negatív visszacsatolással szabályozható) Közös bemeneti jelekre ne erősítsen Fázistolás legyen minél kisebb A kimeneti jel legyen kivezérelhető tápfeszültségig A kimenet legyen rövidzár védett Minél kisebb zaj A bemeneti fokozata egy differenciálerősítő

Tranzisztoros differenciálerősítő Párba válogatott alkatrészek Közös hűtőfelület Integrált tranzisztor-pár Műveleti erősítő bemeneti fokozata Nyugalmi állapotban egyforma áram folyik a két tranzisztoron (I0/2) Ubes=Ube1-Ube2=UBE1-UBE2 A differenciális bemenet: ha mindkét bemenetre ugyan azt a jelet kapcsoljuk, akkor a kimeneten elvileg semekkora jel nincs. Legyen az erősítő nyílt hurkú erősítése A. Ha a + előjellel jelzett neminvertáló bemenetre (Up) földet kötünk, a - jellel jelölt invertáló bemenetre (Un) pedig egy tetszőleges bemenő (Ube) jelet, akkor a kimeneten lévő Jel -AUbe lesz. Ha az invertáló bemenet van földön és a neminvertálóra kötjük a bemenő jelet, akkor a kimenő jel AUbe lesz. Természetesen a kimenő jel nem lehet nagyobb a tápfeszültségeknél, amivel tápláljuk a műveleti erősítőt!

Tranzisztoros differenciálerősítő A kollektor áramok a szimmetrikus vezérlőfeszültség függvényében: Már viszonylag kis bemeneti feszültség (4UT=104 mV) esetén is az áram majdnem teljesen átterhelődik az egyik tranzisztorra.

Műveleti erősítő Vout = A(V+ - V-) Bemenete differenciálerősítő: 2 bemenete van, az ezek közötti feszültségkülönbséget erősíti, ez az ún. differenciális feszültség erősítés. Vout = A(V+ - V-)

Műveleti erősítő A differenciális bemenet: ha mindkét bemenetre ugyan azt a jelet kapcsoljuk, akkor a kimeneten elvileg semekkora jel nincs. Legyen az erősítő nyílt hurkú erősítése A. Ha a + előjellel jelzett neminvertáló bemenetre (Up) földet kötünk, a - jellel jelölt invertáló bemenetre (Un) pedig egy tetszőleges bemenő (Ube) jelet, akkor a kimeneten lévő jel -AUbe lesz. Ha az invertáló bemenet van földön és a neminvertálóra kötjük a bemenő jelet, akkor a kimenő jel AUbe lesz. Természetesen a kimenő jel nem lehet nagyobb a tápfeszültségeknél, amivel tápláljuk a műveleti erősítőt!

A negatív visszacsatolás A kimeneti jel egy részét a visszacsatoló hálózaton keresztül visszavezetjük a bemenetre, és kivonjuk a bemeneten lévő jelből. Az erősítést a visszacsatolás határozza meg!

Műveleti erősítő transzfer karakterisztikája

Műveleti erősítő típusok Alapkapcsolások: Invertáló erősítő (fázist fordít) Nem invertáló erősítő (azonos fázis) Egységnyi erősítésű erősítő (feszültség követő) Műveletvégző kapcsolások: Összegző kapcsolás Kivonó (differencia) erősítő Integrátor Differenciáló

Műveleti erősítők Elhanyagolások a kapcsolások vizsgálatához: „A” elhanyagolás: A műveleti erősítőbe befolyó áramok (Ibp és Ibn) a kapcsolásban folyó áramokhoz képest elhanyagolhatók. A vizsgálatoknál úgy vesszük, hogy a műveleti erősítők bemeneti árama nulla. „B” elhanyagolás: A műveleti erősítő ubes bemeneti feszültsége elhanyagolhatóan kicsi a kapcsolás egyéb feszültségeihez képest. (a gyakorlatban ube>0 esetén ez sohasem nulla, mert akkor az áramkör nem adna a kimenetén feszültséget (uki=ubes·A0!!)

Invertáló bemenetről vezérelt

Nem invertáló bemenetről vezérelt

Egységnyi erősítésű erősítő

Összegző kapcsolás (invertáló)

Kivonó (differencia) erősítő

Integrátor

Differenciáló áramkör

Műveleti erősítők kapcsolóüzeme A műveleti erősítők telítéses üzemében a kimeneti feszültség értéke nincs lineáris kapcsolatban a bemeneti feszültséggel. A telítéses tartomány jellemző paraméterei: maximális kimeneti feszültségek: +Ukimax és -Ukimax. (A két feszültség különböző lehet.) max. kimeneti jelváltozási sebesség (slew rate) A műveleti erősítők kimeneti jelváltozási sebessége alacsony (különösen akkor, ha áramkorlátozás is be van építve), ezért speciálisan erre az üzemállapotra kifejlesztett, műveleti erősítő kapcsolástechnikán alapuló komparátor áramkörök állnak rendelkezésre. A legjellemzőbb alkalmazási területek: Komparátorok Multivibrátorok Hullámforma generátorok

Műveleti erősítő transzfer karakterisztikája

Komparátorok A komparátorok két feszültség összehasonlítására használt áramkörök. Az egyik feszültség a referencia feszültség (UREF), amely kitüntetett feszültség és ezzel hasonlítjuk össze a másik feszültséget. A komparátor egyik kimeneti állapota az Ube>UREF, míg a másik az Ube<UREF állapotnak felel meg. A visszacsatolás a nem-invertáló bemeneten van (pozitív)! A komparátorok leginkább az analóg-digitális átalakítókban (AD-konverterek) kapnak szerepet, melyek az analóg mérések adatait digitalizálják. Komparátor típusok: Hiszterézis-nélküli komparátorok Hiszterézises komparátorok

Hiszterézis nélküli komparátorok Nem-invertáló bemenet felől vezérelt Az egyik telítési állapotból a másikba történő felfutáshoz szükséges bemeneti feszültségek azonosak. Kapcsolási rajz: Transzfer karakterisztika:

Hiszterézises komparátorok Invertáló bemenet felől vezérelt Az egyik telítési állapotból a másikba történő felfutáshoz szükséges bemeneti feszültségek eltérnek egymástól. Kapcsolási rajz: Transzfer karakterisztika:

Hiszterézises komparátorok Nem-invertáló bemenet felől vezérelt Az egyik telítési állapotból a másikba történő felfutáshoz szükséges bemeneti feszültségek eltérnek egymástól. Kapcsolási rajz: Transzfer karakterisztika:

Schmitt-trigger Bemeneti jel Hiszterézis nélküli komparátor

Ablak komparátorok Az ablakkomparátorok jelzik, hogy a vizsgálandó jel bele esik-e a jel egy meghatározott tartományába.

Billenőkörök A billenőkörök két lehetséges kimeneti állapottal rendelkező digitális áramkörök, pozitív visszacsatolással. Az átbillenést az egyes állapotokba különböző módokon idézhetjük elő. Típusai: Astabil multivibrátorok (AMV): mindkét kimeneti állapot instabil, állapotát külső beavatkozás nélkül meghatározott időfüggvény szerint változtatja (szabadon futó oszcillátor, négyszögjel generálás). Monostabil multivibrátorok (MMV): egy stabil állapota van. Az áramkör ebből a stabil állapotból csak külső jel (trigger) hatására billen ki, de a kimenet áthaladva az instabil állapoton ismét a stabil állapotba jut (időzítő). Bistabil multivibrátorok (BMV): két stabil kimenettel rendelkeznek és inkább a digitális technikában alkalmazottak (tárolók, memória). A stabil állapotokból csak indító jelek segítségével billenthetők ki. Általában két jelre van szükség a kibillentéshez és a visszabillentéshez (SET, RESET)

Billenőkörök visszacsatolásai

Bistabil

Monostabil

Astabil

Multivibrátor jelalakok

Köszönöm a figyelmet!

Felhasznált irodalom Dr. Kovács Ernő – Elektronika I.-II. (Miskolci Egyetem előadás jegyzet) Zombori Béla – Elektronika Dr. Borbély Gábor: Elektronika I.-II. (előadás jegyzet) Hegyesi László – Műveleti erősítők