2D-3D számítógépes grafika

Slides:



Advertisements
Hasonló előadás
BMEEPAG0202 CAD és építészinformatika / 2015 ősz 2D-3D számítógépes grafika Fénymérés BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék Batta Imre DLA.
Advertisements

Közművelődési szakmai továbbképzések, helyük a felnőttképzés rendszerében; az akkreditáció folyamata A közösségi művelődés felnőttképzési feladata Nemzeti.
Színelmélet Kalló Bernát KABRABI.ELTE. Áttekintés ● A fény ● Fényérzékelés ● Színek jellemzői ● Színábrázolások ● Fényforrások.
Összefoglalás Csillagászat. Tippelős-sok van külön 1. Honnan származik a Föld belső hője? A) A Nap sugárzásából. B) A magma hőjéből. C) A Föld forgási.
Lorem ipsum dolor sit amet, consectetur Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore Közlekedési.
FIZIKA Az elektromágneses spektrum Balthazár Zsolt Apor Vilmos Katolikus Főiskola.
FIZIKA Alapok Balthazár Zsolt Apor Vilmos Katolikus Főiskola.
Beruházási és finanszírozási döntések kölcsönhatásai 1.
Szenzorok Ellenállás változáson alapuló szenzorok.
ENERGIA TAKARÉKOS RENDSZERSZEMLÉLET AZ ÉPÜLETGÉPÉSZETBEN Fehér János okl. kohómérök Fűtéstechnikai szakmérnök Székesfehérvár, 2010.JAN.20.
Röntgen. Röntgen sugárzás keltése: Wilhelm Konrad Rontgen ( ) A röntgensugárzás diszkrét atomi elektronállapotok közötti átmenetekbôl vagy nagy.
Hullámmozgás. Hullámmozgás  A lazán felfüggesztett gumiszalagra merőlegesen ráütünk, akkor a gumiszalag megütött része rezgőmozgást végez.
Frekvencia. Különböző frekvenciájú szinusz hullámok a lentebbiek magasabb frekvenciájúak.
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA VILLAMOS ENERGIA FAZEKAS ANDRÁS ISTVÁN.
Magyar Kereskedelmi Engedélyezési Hivatal Haditechnikai és Exportellenőrzési Hatóság Várható változások a hadiipari tevékenységi engedélyezés területén.
Környezeti fenntarthatóság. A KÖRNYEZETI FENNTARTHATÓSÁG JELENTÉSE A HELYI GYAKORLATBAN Nevelőtestületi ülés,
Alapfogalmak BME-VIK.
EN 1993 Eurocode 3: Acélszerkezetek tervezése
Nemzeti Erőforrás Minisztérium Oktatásért Felelős Államtitkárság
PANNON-LNG Projekt Tanulmány LNG lehetséges hazai előállításának
1. témazáró előkészítése
Becslés gyakorlat november 3.
Áramlástani alapok évfolyam
A mozgás kinematikai jellemzői
Infravörös spektrometria
Az erő fogalma. Az erő fogalma Mozgásállapot-változásról akkor beszélünk, ha megváltozik egy test mozgásának sebessége, mozgásának iránya vagy mindkettő.
Kockázat és megbízhatóság
RÁDIÓRENDSZEREK Képi jelek Győr.
Levegőtisztaság-védelem 6. előadás
SZÁMVITEL.
Tervezés I. Belsőtér BME-VIK.
Szerkezeti elemek tervezése. Oszlopok
Komplex természettudomány 9.évfolyam
Környezeti teljesítményértékelés
A földrajzi kísérletek szervezése és végrehajtása
Egyedi lánc Vázlat Alak, konformáció Szabadon kapcsolt láncmodell
dr. Jeney László egyetemi adjunktus Európa regionális földrajza
Az élesség beállítása vagy fókuszálás
Alapfogalmak folytatás Színhőmérséklet és színvisszaadás ellenőrzése
Turbulencia hatása a tartózkodási zóna légtechnikai komfortjára
Dr. habil. Gulyás Lajos, Ph.D. főiskolai tanár
Számítógépes szimulációval segített tervezés
Fényforrások 3. Kisülőlámpák 3.4 Működtető szerelvények
Elektromos alapjelenségek
Ékszíj-, laposszíjtárcsa Kúpos kötések, szorítóbetétek
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
A légkör anyaga és szerkezete
Munkanélküliség.
Környezeti Kontrolling
Fényforrások 3. Kisülőlámpák
Halmazállapot-változások
Fényforrások 3. Kisülőlámpák 3.2 Kisnyomású kisülőlámpák
Tremmel Bálint Gergely ELTE-TTK, környezettudomány MSc
4. Fénytechnikai mennyiségek mérése
szabadenergia minimumra való törekvés.
2. A KVANTUMMECHANIKA AXIÓMÁI
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Vállalati fenntarthatóság
A RÖNTGEN ÉS A RADIOAKTÍV SUGÁRZÁSOK DETEKTÁLÁSA
Hőtan Összefoglalás Kószó Kriszta.
Hídtartókra ható szélerők meghatározása numerikus szimulációval
Emlékeztető/Ismétlés
A mérés
Röntgen.
Állandó és Változó Nyomású tágulási tartályok és méretezésük
Áramlástan mérés beszámoló előadás
Az impulzus tétel alkalmazása (A sekélyvízi hullám terjedése)
Méréstechnika 1/15. ML osztály részére 2017.
„Mi a pálya?”.
Hagyományos megjelenítés
Előadás másolata:

2D-3D számítógépes grafika Fénymérés Batta Imre BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék

Tartalom Radiometria / fotometria Fény mennyiségei Melléklet Téma: hogyan mérjük a fényt. Radiometria / fotometria metrológiai alapfogalmak láthatósági függvény Fény mennyiségei fényáram ▪ fényerősség ▪ megvilágítás ▪ fénysűrűség Melléklet feketetest sugárzó ▪ kandela ▪ fényhatásfok

Fénymérés Fény mennyiségei

Radiometria, fotometria, színmérés Optikai radiometria az EM sugárzást fizikai mennyiségek formájában határozza meg. A mérés az optikai hullámhossz tartományban történik, 10 nm (3×1011 Hz) és 1 mm (3×1016 Hz) között. Mennyiségek jelölése e (energia) és λ (hullámhossz) alsó indexekkel. Fotometria nem más, mint spektrálisan súlyozott radiometria. A mérés a látható hullámhossz tartományban, (360-) 380 nm és 780 (-830) nm között, az emberi látás hatásfokát (érzékenységét) leíró un. láthatósági függvény szerint súlyozva történik. Mennyiségek jelölése radiometriai jelek v (Visibility) alsó indexszel. Színmérés a színekhez – mint vizuális érzetekhez – objektíven mérhető mennyiségeket rendel. Optikai radiometria az EM sugárzást fizikai mennyiségek formájában határozza meg. A mérés az optikai hullámhossz tartományban történik, 10 nm (3×1011 Hz) és 1 mm (3×1016 Hz) között. Mennyiségek jelölése e (energia) és λ (hullámhossz) alsó indexekkel. Fotometria nem más, mint spektrálisan súlyozott radiometria. A mérés a látható hullámhossz tartományban, (360-) 380 nm és 780 (-830) nm között, az emberi látás hatásfokát (érzékenységét) leíró un. láthatósági függvény szerint súlyozva történik. Mennyiségek jelölése radiometriai jelek v (Visibility) alsó indexszel. Színmérés a színekhez – mint vizuális érzetekhez – objektíven mérhető mennyiségeket rendel.

Mennyiség = Mértékegység × Mértékszám Fény mennyiségei Mennyiség = Mértékegység × Mértékszám Mértékegység a mennyiség egysége. A mennyiség olyan része, amely megvalósítható, mérhető, a mennyiségek szokásos nagyságrendjéhez közelálló, és amely nem nagyon tér el az előző mértékegységtől. Egy mennyiségnek több mértékegysége is lehet: pl. v = 25 m/s = 90 km/h. Mennyiség (és mértékegység) lehet: alapmennyiség (alapmértékegység), származtatott mennyiség, (származtatott mértékegység), segédmennyiség (segédmértékegység). Metrológiai szempontból a mértékegységek között nincs alá- és fölérendeltségi viszony. Az alapmértékegységek konvenció szerint függetleneknek tekinthetők egymástól. A hét alapmértékegység: hosszúság (méter), tömeg (kilogramm), idő (másodperc), áramerősség (amper), hőmérséklet (kelvin), anyagmennyiség (mol), fényerősség (kandela).

Fény mennyiségei Alapmennyiség, (alapmértékegység) Sugárzott teljesítmény (watt) vagy Fényerősség (kandela) Segédmennyiségek, (segédmértékegységek), súlytényező Távolság: jele r (Rádiusz), mértékegysége m. Felület: jele A (Area), mértékegysége m2. Térszög: kimetszett gömbfelület-terület és a gömbsugár négyzetének hányadosa (dA/r2), jele Ω, mértékegysége szteradián, jele sr, (1 sr = 4π). Hőmérséklet: jele T (Temperature), mértékegysége K (Kelvin). Láthatósági tényező függvények: jele V(λ) és V’(λ). Származtatott mennyiségek, (származtatott mértékegységek) Fényáram (lumen) Megvilágítás (lux) Fénysűrűség (nit) Alapmennyiség, (alapmértékegység) Sugárzott teljesítmény (watt) vagy Fényerősség (kandela) Segédmennyiségek, (segédmértékegységek), súlytényező Távolság: jele r (Rádiusz), mértékegysége m. Felület: jele A (Area), mértékegysége m2. Térszög: kimetszett gömbfelület-terület és a gömbsugár négyzetének hányadosa (dA/r2), jele Ω, mértékegysége szteradián, jele sr, (1 sr = 4π). Hőmérséklet: jele T (Temperature), mértékegysége K (Kelvin). Láthatósági tényező függvények: jele V(λ) és V’(λ). Származtatott mennyiségek, (származtatott mértékegységek) Fényáram (lumen) Megvilágítás (lux) Fénysűrűség (nit)

Fény mennyiségei Φe A, Ω, r V(λ) X(λ) = [energia] × [idő] × [hatásfok] × [pont vagy felület] × [térszög] X(λ) = [sugárzott teljesítmény] × [hatásfok] × [geometria] X(λ) = [fényáram] × [geometria]

CIE láthatósági függvények 507 555 1.0 Fénysűrűség 400 500 600 700 λ Hullámhossz (nm) A V(λ) és V’(λ) láthatósági függvények (V mint Visibility) az emberi látás hatékonyságát (érzékenységét) ábrázolják hullámhossz közökben, nappal (fotopos látás csapokkal adaptált ~5 cd/m2 fénysűrűség szint felett), és éjszaka (szkotopos látás pálcákkal adaptált 10-3 cd/m2 fénysűrűség alatt). Maximum helyek 555 nm illetve 507 nm. CIE fénymérő észlelő, az az ideális észlelő, akinek a látása világosban illetve sötétben megegyezik a V(λ) és V’(λ) láthatósági függvényekkel. K. S. Gibson, E. P. T. Tyndall: Visibility of radiant energy. Scientific Papers of the Bureau of Standards, 19, 131-191. 1923 CIE 1924, CIPM 1933, CGPM 1979 (SI) A mérés villogásos fotométerrel készült, az 555 nm-es fotopos, illetve a 507 nm-es szkotopos referencia fényt váltogatja a spektrum monokromatikus színeivel. A függvény értékei azok a relatív fénysűrűség mennyiségek [Lλ555/L(λ)] ahol a villogás megszűnik, vagyis a szem nem érzékel világosság különbséget. Gibson és Tyndall 1923

Fénymérés Fotometria

Φv = Kmax ∫(Φe,λ/ dλ) • V(λ) dλ Φv Fényáram (Flux) Φe sugárzott teljesítmény (Radiant Flux, Radiant Power) az a Q energia, amelyet fényforrás (önsugárzó vagy felület visszaverődés) optikai sugárzás formájában dt egységnyi idő alatt kibocsát, átenged, visszaver illetve felfog. Irány nélküli skalár mennyiség. Képlete: Φe,λ = dQ / dt Mértékegysége: watt, jele W. Φv fényáram (Luminous Flux) a Φe,λ sugárzott teljesítmény V(λ) vagy V’(λ) látáshatósági függvénnyel súlyozott hányada. Φv = Kmax ∫(Φe,λ/ dλ) • V(λ) dλ Kmax = 683 lm/W Mértékegysége: lumen, jele lm. A lumen a fényerőség egységéből, a kandelából származtatott mennyiség. Az a teljesítmény, amelyet minden irányban egyenletesen 1 kandela fényerősséggel sugárzó pontszerű fényforrás 1 szteradián térszögbe kibocsát. Így a teljes 4π térszögben minden irányban 1 kandela fényerősségű fényforrás fényáram mennyisége 4π lm.

Φv Összfényáram (Total Flux) Fv összfényáram (Total Luminous Flux) pontszerű fényforrás minden irányban sugárzott fényáram mennyisége. Mértékegysége: lumen, jele lm. A lumen mennyisége a fényerőségből származtatott: 1 lumen mennyiségű fényáram minden irányban 1 cd fényerősséggel egyenletesen sugárzó pontszerű fényforrás 1 szteradián térszögbe kibocsátott teljesítménye. Így a teljes 4π térszögben minden irányban 1 cd fényerősségű fényforrás fényárama = 4πlm. 1st = A / r2

Φv Összfényáram (Total Flux) mérendő fényforrás takarólemez lambert felület (cinkoxid) sugárzásmérő V(λ) szűrővel 2.5 m-es integráló gömb a fényforrások összfényáram méréséhez. A fénymérő a diffúz visszaverődést méri. (National Institute of Standards and Technology).

Iv Fényerősség (Intensity) Iv fényerősség (Luminous Intensity) az a Φv fényáram hányad, amelyet pontszerű fényforrás adott irányú dΩ elemi térszögbe sugároz. Képlettel: Iv = dΦv / dΩ Mértékegysége: kandela, jele cd. A kandela a fényáram lumenből származtatott mértékegység: 1 cd = 1 lm / 1 sr A kandela 1 lumen fényáram mennyiség, amelyet pontszerű fényforrás 1 szteradián térszögbe sugároz. Így az a pontszerű fényforrás, amely 1 candela fényerősséggel sugároz minden irányban egyenletesen, 4π lumen összfényáramot sugároz. dΩ

Ev Megvilágítás (Illuminance) A megvilágítás az építészeti terek és felületek, utak stb. megvilágításához szükséges fénymennyiség jellemzője. Ev megvilágítás (Illuminance) az a Φv fényáram hányad, amely felfogó felület dA elemi területére esik. Képlettel: Ev = dΦv / dA Mértékegysége: lux, jele lx. A lux az összfényáram lumenből származtatott mértékegység: 1 lx = 1 lm/m2 A lux 1 lumen fényáram mennyiség, amelyet pontszerű fényforrás 1 szteradián térszögbe sugároz, amely 1 m2 felületet metsz ki 1 m sugarú gömbfelületen. dA Lux: 1m sugarú gömbbe helyezett pontszerű fényforrás, amely 1 candela fényerősséggel sugároz minden irányban, 1 lumen fényáramot sugároz 1 sr térszögbe, 1 lux megvilágítást ad 1 m2-es gömbfelületen. iroda, konyha, szerelőműhely, laboratórium 500 oktatóterem, könyvtár, szerelőműhely 300 előcsarnok, társalgó, étkező 200 raktár, rakodó terület 150 lépcsőház, folyosó, öltőző 100 helyiség Lux tervezőiroda, szupermarket 750

Lv Fénysűrűség (Luminance) Lv fénysűrűség (Luminance) az a Φv fényáram hányad, amelyet felület adott irányba –, dA elemi területe az irányra merőleges cosθ vetületével, dΩ elemi térszögbe – sugároz, vagy adott irányból, dΩ elemi térszögből, elemi területe az irányra merőleges vetületi területével – felfog. Képlettel: Lv = d2Φv / dA cosθ dΩ Mértékegysége: nit, jele nt. A nit a fényáram lumenből vagy a fényerősség kandelából származtatott mértékegység: 1 nt = 1 lm/(m2×sr) = 1 cd/m2 Nit helyett inkább a cd/m2 kifejezés használatos. N dΩ dA × cosθ θ nap 1.550.000.000 izzólámpa 6.000.000 nagynyomású higanygőzlámpa 150.000 kisnyomású nátriumlámpa 100.000 fénycső 8.000 gyertyaláng 6.000 LCD képernyő 300 fényforrás Nit (cd/m2)

Mennyiségek, mértékegységek Radiometria Fotometria Mennyiség Jel Mértékegys. Sugárzott teljesítmény (Radiant Flux, Fluxus) Φeλ Watt (W) Fényáram (Luminous Flux) Φv Lumen (lm) Sugárzáserősség, intenzitás (Radiant Intensity) Ieλ W/sr Fényerősség, intenzitás (Luminous Intensity) Iv Kandela (cd) (lm/sr) Besugárzás (Irradiance) Eeλ W/m2 Megvilágítás (Illuminance) Ev Lux (lx) (lm/m2) Sugársűrűség (Radiance) Leλ W/(m2×sr) Fénysűrűség (Luminance) Lv Nit (nt) lm/(m2×sr) Átváltás (Φvλ/Φeλ) Xv = Kmax ∫Xeλ V(λ) dλ ▪ Kmax = 683 lm/W ▪ X = Φ, I, E, L 1m sugarú gömbbe helyezett pontszerű fényforrás, amely 1 candela fényerősséggel sugároz minden irányban, 1 lumen fényáramot sugároz 1 sr térszögbe, 1 lux megvilágítást ad 1 m2-es gömbfelületen.

www.epab.bme.hu © Batta Imre 2017

Melléklet Fény mértékegysége Fénymérés Melléklet Fény mértékegysége

Teljes feketetest sugárzó A fényenergia mértékegységének meghatározásához olyan etalon (mérték) fényforrás szükséges, amelynek Φ(λ) spektrális teljesítménye pontosan megvalósítható. A teljes feketetest sugárzó (Planck sugárzó) egy zárt üreg, amelynek falát hevítve benne EM sugárzás keletkezik. A termodinamika törvénye (Kirchhoff) szerint zárt üregben a kibocsátott és az elnyelt sugárzás egyensúlyban van, ezért az üreg terében a sugárzás energia eloszlása csak az üreg falának hőmérsékletétől függ, az üreg anyagától, alakjától és méretétől (sugárzó területétől) nem. A teljes feketetest sugárzó fala tökéletes sugárzó és tökéletes elnyelő, minden hullámhosszon sugároz és elnyel. Megfigyelő nyílás

Teljes feketetest sugárzó Rézgyűrű http://www.otto-lummer.de/waermestrahlung.html Wolfram cső diafragmákkal Üreg (fekete test) Kurlbaum és Lummer feketetest kísérleti készüléke 1898-ból. www.otto-lummer.de

Teljes feketetest sugárzó Látható hh sáv (spektrum) 5E+13 Minden anyag 0 Kelvin hőmérséklet felett EM sugárzást bocsát ki. A sugárzás energia összetétele (eloszlása hullámhosszonként) a szilárd és folyékony vagy nagynyomású gáz halmazállapotú anyag esetében folytonos, a gázok esetében vonalas. Az energia eloszlás, így a fény színe, az anyag hőmérsékletétől függően változik (Stefan- Boltzmann). A hőmérséklet növelésével az energia maximum a rövidebb hullámhosszak felé tolódik (Wien), ezért először vörös (1500 K), majd sárgásfehér (5000 K), végül kékesfehér (10000 K) színt érzékelünk. A fényméréshez választott mértékadó energia eloszlás megállapodás szerint ~2042 K hőmérsékleten, a platina halmazállapot-változásánál (dermedési pont) keletkezik. 5900 K Nap EM sugárzás 4E+13 3E+13 Spektrális besugárzás (Eλ) - W/m2 2E+13 5000 K 1E+13 3200 K 500 1000 1500 2000 λ 1 5900 K 5000 K 3200 K 2042 K 380 780 λ Az anyagok EM sugárzása különböző hőmérsékleten. Alul: normalizált spektrális eloszlások.

Kandela CGPM 1967 SI meghatározás A kandela a feketetest sugárzó 1/600000 m2 felületének (Ie) fényerőssége a felületre merőleges irányban, a platina dermedési hőmérsékletén (2042 K) 101 325 Newton/m2 nyomás alatt. (60 cd/cm2 terület meghatározás indoka, hogy a kandela fényerőssége ne térjen el a régi kandela mennyiségtől.) CIPM 1979 SI meghatározás A kandela azon 540×1012 hertz frekvenciájú (~555 λ) monokromatikus sugárzást kibocsátó fényforrás (Ie) fényerőssége adott irányban, amelynek sugárerőssége ebben az irányban 1/683 watt/szteradián. D A B C Teljes feketetest sugárzó A Tóriumoxid olvasztótégely B Tóriumoxid vagy wolframcső (feketetest) C Platina olvadék (T = 2042 K, 1116.66 C°) D Nyílás (A = 1/600.000 m2) CGPM – Conférence Générale des Poids et Mesures, Általános Súly- és Mértékügyi Konferencia CIPM – Conférence Internationale des Poids et Mesures, Nemzetközi Súly- és Mértékügyi Konferencia

Fényhatásfok: lumen / watt arány A radiometria és a fotometriai mennyiségek közötti váltószám Km, a kandela a láthatósági függvénnyel súlyozott sugárzott teljesítménye Km = 683 = Acd / ∫Le,λ(Pt2042 K) V(λ) dλ ahol Acd= 0.0006 m2 a feketetest sugárzó felülete, Le,λ(Pt2042 K) a fekete test sugárzott teljesítménye 2042 K hőmérsékleten, Planck képlete szerint, V(λ) a látás hatásfoka 380-780 nm között. Így K K = Km ∫ Leλ(λ) V(λ) dλ Platina sugársűrűsége 2042 K hőmérsékleten Le,λ=972.000 W/m2 380 780 555 50 1,0 (I) 2042 K platina spektrális eloszlása 40 0,8 30 0,6 (V) Láthatósági függvény Sugársűrűség Wsr/m2 Relatív látás hatásfok (I) kandela, 1979 λ = 555 nm I = 1/683 W/sr 20 0,4 10 0,2 (I) kandela, 1967 0,0 300 400 500 600 700 800 900 𝑐 1 𝜋 𝑛 2 𝜆 −5 𝑉 𝜆 𝑑𝜆 𝑒𝑥𝑝 𝑐 2 𝑛𝜆 𝑇 𝑃𝑡 −1

Irodalom Bureau International des Poids et Mesures: The International System of Units (SI), 8th edition 2006. W.R. Blevin, B. Steiner: Redefinition of the Candela and the Lumen, Metrologia, 1975, 11, n°3, 97-104. W.R. Blevin, K. Kessler, K.D. Mielenz, G. Wyszecki: Principles Governing Photometry, Metrologia, 1983, 19, n°3, 97-101. K. S. Gibson, E. P. T. Tyndall: Visibility of radiant energy. Scientific Papers of the Bureau of Standards, 19, 131-191. 1923 Günther Wyszecki, W.S. Stiles: Color science, concepts and methods, quantitative data and formulae. Second Edition. Wiley, 1982.