Leíró statisztika gyakorló feladatok október 15.

Slides:



Advertisements
Hasonló előadás
2. előadás.
Advertisements

A pedagógiai kutatás módszertana
I. előadás.
Petrovics Petra Doktorandusz
Nemzetközi gazdaságstatisztika

Gazdaságelemzési és Statisztikai Tanszék
Digitális képanalízis
Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet
A megoldás főbb lépései:
Mérési pontosság (hőmérő)
Gazdaságelemzési és Statisztikai Tanszék
Microsoft Excel 2010 Gyakoriság.
Közlekedésstatisztika
Adatfeldolgozás.
TF Informatikai és Oktatástechnológiai Tanszék
4. előadás.
5. előadás.
A középérték mérőszámai
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Matematikai alapok és valószínűségszámítás
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Idősor komponensei Trend vagy alapirányzat: az idősor alakulásának fő irányát mutatja meg. Szezonális vagy idényszerű ingadozás: szabályos időszakonként.
Statisztika.
Készítette: Horváth Zoltán (2012)
Kvantitatív módszerek
Leíró statisztika III..
Valószínűségszámítás
Gazdaságstatisztika 15. előadás.
Többváltozós adatelemzés
Adatleírás.
Dr Gunther Tibor PhD II/2.
I. előadás.
Viszonyszámok A viszonyszám két egymással logikai kapcsolatban álló statisztikai adat hányadosa V= A/B V: a viszonyszám A:a viszonyítás alapját képező.
Számtani és mértani közép
Osztóértékek, eloszlások
Középértékek – helyzeti középértékek
x1 xi 10.Szemnagyság: A szemnagyság megadásának nehézségei
Valószínűségszámítás II.
A gyakorisági sorok grafikus ábrázolása
4. előadás.
A számítógépes elemzés alapjai
Konzultáció – Leíró statisztika október 22. Gazdaságstatisztika.
I. Zárthelyi dolgozat Elméleti témakörök, típuspéldák Gazdaságstatisztika.
A testek mozgása. 1)Milyen mozgást végez az a jármű, amelyik egyenlő idők alatt egyenlő utakat tesz meg? egyenlő idők alatt egyre nagyobb utakat tesz.
Kvantitatív módszerek 2014 ősz MINTAVÉTEL, LEÍRÓ STATISZTIKA Kvantitatív módszerek szeptember 30.
Leíró statisztika, részekre bontott sokaság, becslés Árva Gábor PhD Hallgató.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
2. előadás Gyakorisági sorok
A számítógépes elemzés alapjai
MINTAVÉTEL, LEÍRÓ STATISZTIKA
Kvantitatív módszerek
Szóródási mérőszámok, alakmutatók, helyzetmutatók
Statisztika Érettségi feladatok
Kvantitatív módszerek MBA és Számvitel mesterszak
Becsléselmélet - Konzultáció
Nemparaméteres próbák
I. Előadás bgk. uni-obuda
Speciális szóródás: Koncentráció
Statisztikai alapfogalmak Eloszlásjellemzők
2. előadás Gyakorisági sorok, Grafikus ábrázolás
Adatfeldolgozási ismeretek műszeres analitikus technikusok számára
5. előadás.
A leíró statisztikák alapelemei
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
Adatfeldolgozási ismeretek környezetvédelmi-mérés technikusok számára
Statisztika Érettségi feladatok
4. előadás.
Előadás másolata:

Leíró statisztika gyakorló feladatok 2015. október 15. Gazdaságstatisztika Leíró statisztika gyakorló feladatok 2015. október 15.

Reklamációk száma (reklamáció naponta) Példa Egy internetszolgáltató vállalkozásnál 280 napon keresztül vizsgálták az ügyfelek napi reklamációinak számát. A megfigyelések eredményiből az alábbi gyakorisági eloszlást készítették. Készítsen az adatokból gyakorisági táblázatot és értelmezze minden gyakorisági sorból az 5. osztályhoz tartotó értéket! Ábrázolja a gyakorisági sort és a kumulált relatív gyakoriságokat! Mekkora a napi reklamációk átlagos száma? Mekkora a napi reklamációk tipikus értéke? Mekkora a medián értéke? Mekkora az átlagtól vett eltérések négyzetes átlaga (szórás)? Mekkora a relatív szórás? Reklamációk száma (reklamáció naponta) Napok száma 31 1 45 2 65 3 77 4 32 5 21 6 9

Reklamációk száma (reklamáció naponta) Példa – megoldás (1) Készítsen az adatokból gyakorisági táblázatot és értelmezze minden gyakorisági sorból az 5. osztályhoz tartozó értéket! A megfigyelések során 32 napon volt a napi reklamációk száma 4. 250 napon volt a napi reklamációk száma 4, vagy annál kevesebb. Az esetek 11,4%-ban volt napi 4 reklamáció. Az esetek 89,3%-ban volt a napi reklamációk száma 4, vagy annál kevesebb. Reklamációk száma (reklamáció naponta) Napok száma   31 0.111 1 45 76 0.161 0.271 2 65 141 0.232 0.504 3 77 218 0.275 0.779 4 32 250 0.114 0.893 5 21 271 0.075 0.968 6 9 280 0.032

Reklamációk száma (reklamáció naponta) Példa – megoldás (2) Ábrázolja a gyakorisági sort és a kumulált relatív gyakoriságokat! Gyakoriság: Relatív gyakoriság: Kumulált relatív gyakoriság: Reklamációk száma (reklamáció naponta) Napok száma   31 0.111 1 45 76 0.161 0.271 2 65 141 0.232 0.504 3 77 218 0.275 0.779 4 32 250 0.114 0.893 5 21 271 0.075 0.968 6 9 280 0.032

Relatív gyakorisági hisztogram Példa – megoldás (3) Ábrázolja a gyakorisági sort és a kumulált relatív gyakoriságokat! Relatív gyakorisági hisztogram

Kumulált relatív gyakoriságok Példa – megoldás (4) Ábrázolja a gyakorisági sort és a kumulált relatív gyakoriságokat! Kumulált relatív gyakoriságok Kumulált relatív gyakoriság 1,000 0,968 0,893 0,779 0,504 0,271 0,111 1 2 3 4 5 6 Napi reklamációk száma

Reklamációk száma (reklamáció naponta) Példa – megoldás (5) Mekkora a napi reklamációk átlagos száma? Reklamációk száma (reklamáció naponta) Napok száma   31 0.111 1 45 76 0.161 0.271 2 65 141 0.232 0.504 3 77 218 0.275 0.779 4 32 250 0.114 0.893 5 21 271 0.075 0.968 6 9 280 0.032

Példa – megoldás (6) Mekkora a napi reklamációk tipikus értéke? A napi reklamációk tipikus értéke a módusz. A módusz értéke 3. Azért tipikus, mert ez a leggyakoribb érték. Reklamációk száma (reklamáció naponta) Napok száma   31 0.111 1 45 76 0.161 0.271 2 65 141 0.232 0.504 3 77 218 0.275 0.779 4 32 250 0.114 0.893 5 21 271 0.075 0.968 6 9 280 0.032

Reklamációk száma (reklamáció naponta) Példa – megoldás (7) Mekkora a medián értéke? Páros számú adat esetén a sorba rendezett adatok között a két középső átlaga a medián. Esetünkben a 140. és a 141. adat a növekvő sorrendbe rendezett adatok között a két középső. E két adat értéke rendre a 2 és a 2. Ezért a medián értéke 2. Miért nem ezzel számoltunk? Reklamációk száma (reklamáció naponta) Napok száma   31 0.111 1 45 76 0.161 0.271 2 65 141 0.232 0.504 3 77 218 0.275 0.779 4 32 250 0.114 0.893 5 21 271 0.075 0.968 6 9 280 0.032

Reklamációk száma (reklamáció naponta) Példa – megoldás (8) Mekkora az átlagtól vett eltérések négyzetes átlaga (szórás)? Mekkora a relatív szórás? Reklamációk száma (reklamáció naponta) Napok száma   31 0.111 1 45 76 0.161 0.271 2 65 141 0.232 0.504 3 77 218 0.275 0.779 4 32 250 0.114 0.893 5 21 271 0.075 0.968 6 9 280 0.032

Áramkimaradás időtartama (perc) Áramkimaradások száma Példa Egy áramszolgáltatónál 650 megfigyelést végeztek a szolgáltatásban bekövetkező áramkimaradásokra vonatkozóan. A megfigyelések eredményit az alábbi táblázatban rögzítették. Készítsen az adatokból gyakorisági táblázatot és értelmezze minden gyakorisági sorból a 4. osztályhoz tartotó értéket! Ábrázolja az áramkimaradások időtartam szerinti megoszlását és a tapasztalati eloszlásképet! Mekkora az áramkimaradások átlagos időtartama? Mekkora a tipikusnak tekinthető áramkimaradás időtartama? Becsülje meg és értelmezze a mediánt! Adjon becslést a szórásra! Mekkora a relatív szórás? Becsülje meg az alsó és felső kvartiliseket és deciliseket! Áramkimaradás időtartama (perc) Áramkimaradások száma [0;10) 40 [10;20) 190 [20;30) 350 [30;40) [40;50) 20 [50;60) 10

Áramkimaradás időtartama (perc) Áramkimaradások száma Példa – megoldás (1) Készítsen az adatokból gyakorisági táblázatot és értelmezze minden gyakorisági sorból a 4. osztályhoz tartotó értéket! A megfigyelések során 40 esetben volt az áramkimaradás időtartama 30 percnél hosszabb vagy azzal egyenlő és 40 percnél rövidebb. 620 esetben volt az áramkimaradás időtartama 40 percnél rövidebb. Az esetek 6,2%-ban volt az áramkimaradás időtartama 30 percnél hosszabb vagy azzal egyenlő és 40 percnél rövidebb. Az esetek 95,4%-ban volt az áramkimaradás időtartama 40 percnél rövidebb. Áramkimaradás időtartama (perc) Áramkimaradások száma   [0;10) 40 0.062 [10;20) 190 230 0.292 0.354 [20;30) 350 580 0.538 0.892 [30;40) 620 0.954 [40;50) 20 640 0.031 0.985 [50;60) 10 650 0.015 1

Példa – megoldás (2) Ábrázolja az áramkimaradások időtartam szerinti megoszlását és a tapasztalati eloszlásképet! Áramkimara-dás időtartama (perc) Áramkimara-dások száma   [0;10) 40 0.062 [10;20) 190 230 0.292 0.354 [20;30) 350 580 0.538 0.892 [30;40) 620 0.954 [40;50) 20 640 0.031 0.985 [50;60) 10 650 0.015 1 Időtartam szerinti megoszlás (relatív gyakorisági hisztogram ) 10 20 30 40 50 60 Áramkimaradások időtartama (perc)

Példa – megoldás (3) Ábrázolja az áramkimaradások időtartam szerinti megoszlását és a tapasztalati eloszlásképet! Áramkimara-dás időtartama (perc) Áramkimara-dások száma   [0;10) 40 0.062 [10;20) 190 230 0.292 0.354 [20;30) 350 580 0.538 0.892 [30;40) 620 0.954 [40;50) 20 640 0.031 0.985 [50;60) 10 650 0.015 1 Tapasztalati eloszláskép (kumulált rel. gyak. hisztogram) 10 20 30 40 50 60 Áramkimaradások időtartama (perc)

Áramkimaradás időtartama (perc) Áramkimara-dások száma Példa – megoldás (4) Mekkora az áramkimaradások átlagos időtartama? Az áramkimaradások átlagos értékének becsléséhez szükségünk van az osztályközepekre. Átlag becslése: Áramkimaradás időtartama (perc) Áramkimara-dások száma   [0;10) 40 0.062 5 [10;20) 190 230 0.292 0.354 15 [20;30) 350 580 0.538 0.892 25 [30;40) 620 0.954 35 [40;50) 20 640 0.031 0.985 45 [50;60) 10 650 0.015 1 55

Áramkimaradás időtartama (perc) Áramkimaradások száma Példa – megoldás (5) Mekkora a tipikusnak tekinthető áramkimaradás időtartama? A leggyakrabban előforduló időtartamú áramkimaradást tekintjük tipikusnak, ez a módusz. Módusz: folytonos ismérv esetén a gyakorisága görbe maximum helye(i). Módusz becslése: tudjuk, hogy a 3. osztályközben van. Áramkimaradás időtartama (perc) Áramkimaradások száma   [0;10) 40 0.062 5 [10;20) 190 230 0.292 0.354 15 [20;30) 350 580 0.538 0.892 25 [30;40) 620 0.954 35 [40;50) 20 640 0.031 0.985 45 [50;60) 10 650 0.015 1 55 A móduszt tartalmazó osztály hossza A móduszt tartalmazó osztály bal végpontja

Példa – megoldás (6) Becsülje meg és értelmezze a mediánt! Áramkimaradás időtartama (perc) Áramkimaradások száma   [0;10) 40 0.062 5 [10;20) 190 230 0.292 0.354 15 [20;30) 350 580 0.538 0.892 25 [30;40) 620 0.954 35 [40;50) 20 640 0.031 0.985 45 [50;60) 10 650 0.015 1 55 A mediánt tartalmazó osztály hossza a megfigyelések száma:650 Az első olyan osztályköz sorszáma, amelyhez tartozó kumulált gyakoriság nagyobb vagy egyenlő, mint a megfigyelések számának fele. Most a 3. osztály. A mediánt tartalmazó osztály alsó osztályhatárának értéke

Példa – megoldás (7) Adjon becslést a szórásra! Mekkora a relatív szórás? Áramkimaradás időtartama (perc) Áramkimaradások száma   [0;10) 40 0.062 5 [10;20) 190 230 0.292 0.354 15 [20;30) 350 580 0.538 0.892 25 [30;40) 620 0.954 35 [40;50) 20 640 0.031 0.985 45 [50;60) 10 650 0.015 1 55

Példa – megoldás (8) Számszerűsítsen alakmutatókat! Áramkimaradás időtartama (perc) Áramkimaradások száma   [0;10) 40 0.062 5 [10;20) 190 230 0.292 0.354 15 [20;30) 350 580 0.538 0.892 25 [30;40) 620 0.954 35 [40;50) 20 640 0.031 0.985 45 [50;60) 10 650 0.015 1 55