Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

STATISZTIKA II. 11. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.

Hasonló előadás


Az előadások a következő témára: "STATISZTIKA II. 11. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék."— Előadás másolata:

1 STATISZTIKA II. 11. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék

2 Idősor – a megfigyelések sorrendje kötött és ez a sorrend fontos információkat hordoz. pl. ipari termelés éves adatait nem lehet felcserélni!! Idő bekapcsolása a gazdasági, társadalmi vizsgálatokba: Komparatív statika (az egyes időpontokban statikusan vizsgált jelenségek egyszerű összehasonlítása) Dinamika (az időbeni lefolyás komplex elemzése) Idősorok elemzése alapfogalmak, egyszerű elemzési eszközök

3 Idősoron az egymást követő, azonos tartalmú megfigyelések sorozatát értjük, és módon jelöljük. Idősor - egy vagy több mennyiség (változó) időben rendezett megfigyelései Ekvidisztáns idősor: a megfigyelések között azonos a távolság. Időbeli megfigyelések vonatkozhatnak időtartamra vagy időpontra. Állapotidősor (stock): egy-egy időpontra (kiválasztott pillanat – eszmei időpont, évkezdet január 1. 0 óra) jellemző megfigyelésekből álló idősor (állományok: népesség, készlet, állatállomány) Tartamidősor (flow):- egy-egy időszakra, időintervallumra (év, hónap stb.) jellemző megfigyelésekből álló idősor pl. termelés, házasságkötések száma Alapfogalmak, egyszerű elemzési eszközök

4 Idősorok elemzésekor célunk lehet: leírás – tendencia, visszatérő szabályosságok, belső összefüggések feltárása, véletlenek tekinthető zavaró hatások egymástól való elválasztása magyarázat – miért viselkedik úgy az idősor, verbális és formális (oksági modelleket keresünk) magyarázat előrejelzés – az idősor várható alakulását a jövőre előrevetíteni Alapfogalmak, egyszerű elemzési eszközök

5 Idősorelemzés legegyszerűbb feladata az értékek átlagának meghatározása. Tartamidősor (flow) – egyszerű számtani átlag: Az eredmény az egy időszakra jutó átlagos értéket mutatja. pl. egy hónapra jutó átlagos termelés, egy évben megkötött házasságok átlagos száma Egyszerű elemzések

6 Állomány típusú (stock) változók – az átlagos állománynagyságot jelenti. Két időpont esetén a nyitó és záró állomány egyszerű számtani átlaga Több időpont esetén a két-két időpont közötti időszakra vonatkozó átlagos állományok egyszerű számtani átlaga Két időpont esetén tehát az y 1 és y 2 értékek számtani átlaga: adja meg a két időpont közötti időszak átlagos állományát, és ezt az eljárást tovább folytatva a második időszakra az és így tovább, az (n-1)-edik időszakraadódik. Egyszerű elemzések

7 Ekkor az egész időszakra vonatkozó átlagos állományt az formula adja meg. Kronologikus átlag - speciálisan súlyozott átlag, amelyik állapotidősorok (állományok) nagyobb időszakra jellemző átlagát fejezi ki Egyszerű elemzések

8 Magyarország népmozgalmi adatai 1996– átlagok

9 Határozzuk meg az élveszületések és a halálozások évi átlagos számát, valamint a népesség évi átlagos számát! Egyszerű elemzések A halálozások évi átlagos száma: Az élveszületések évi átlagos száma: A népesség évi átlagos száma:

10 A szóródás mutatók is számíthatók. Részvények, papírok, befektetések hozamainak idősorait vizsgáljuk, nagyobb szóródás nagyobb kockázatot jelent. Az Antenna Hungária, a TVK, a DÉMÁSZ részvényeinek évi tőzsdei kereskedési napokon érvényes záró árfolyamából kiindulva határozzuk meg, melyik tekinthető a legelőnyösebbnek hozam és kockázat szempontjából? Egyszerű elemzések

11 Részvények kockázata - szóródásmutatók

12

13 A részvények relatív hozamai: A kockázat egyetlen mérőszámmal való kifejezésére alkalmas mérőszám lehet a szórás. Részvények kockázata - szóródásmutatók

14 MegnevezésANTENNATVKDEMASZ Átlag0,0470,0180,049 Szórás1,9061,5511,566 Relatív szórás40,51788,14731,961 Az átlaghozam és a szórás alapján nem egyértelmű a döntés – relatív szórás alapján döntünk!!!!

15 A változás átlagos mértéke ( ) és a változás átlagos üteme ( ). Növekedés átlagos mértéke - mutatószám, amely megadja, hogy az idősor egy időszakra vetítve eredeti mértékegységben átlagosan mennyivel nőtt I csökkent. A változás mértékét úgy kaphatjuk meg, hogy az egymást követő időszakokra kiszámítjuk a változás mértékét, majd azokból egyszerű számtani átlagot számolunk. Így Egyszerű elemzések

16 Ez akkor jellemző, ha a szóródás kicsi, azaz ha az egyes egymást követő időszakok változása nagyjából hasonló. Közelítőleg lineáris fejlődést leíró idősorok alaptendenciáinak tömör jellemzésére használható. Az idősor első és utolsó adatától függ!!! Egyszerű elemzések

17 A változás átlagos ütemét úgy számítjuk ki, hogy az egymást követő időszakokváltozási ütemeit vesszük, és ezekből számítunk mértani átlagot. Növekedés átlagos üteme - mutatószám, amely megadja, hogy az idősor egy időszakra vetítve átlagosan mennyivel nőtt I csökkent százalékosan Egyszerű elemzések

18 Mértani átlag: Az mutató a változás átlagos (egy időszakra jutó) ütemét mértékegység nélküli viszonyszámmal adja meg. Általában %-os formában fejezzük ki. Akkor célszerű számítani, ha az idősor értéke időszakról időszakra nagyjából azonos ütemben változik, azaz közelítőleg exponenciális fejlődést mutat. Egyszerű elemzések

19 A felsőoktatásban résztvevő hallgatók száma - a növekedés/csökkenés átlagos mértéke Az éves változás (növekedés) mértéke nagyjából hasonló az egyes években

20 A felsőoktatásban résztvevő hallgatók száma - a növekedés/csökkenés átlagos mértéke

21 A pamutszövet termelése - a növekedés/csökkenés átlagos üteme Az egyes időszakok közötti %-os csökkenés jellemző (állandó)

22 A pamutszövet termelése - a növekedés/csökkenés átlagos üteme

23 Az idősor egyes értékeit pontdiagrammal ábrázoljuk. Tartamidősorok – pontok az időintervallumok közepén Állományi típusú változók – pontok az időintervallum szélén (időszak eleji vagy időszak végi adatok) Egyszerű elemzések

24 A társadalmi-gazdasági élet idősorai nem megismételhetők, egyszeri lefutásúak. Kísérletező tudományok (fizika, biológia, kémia) – a folyamatok laboratóriumban megismételhetők, így több idősor is rendelkezésre áll Idősorelemzés különféle modelljei: feltételezések a szakmai ismereteink alapján és matematikai állítások. Dekompozíciós modellek – legrégebbi, legnépszerűbb, legegyszerűbb Dekompozíciós idősormodellek

25 A dekompozíciós modellek alapelve az, hogy az idősorok négy fő, egymástól elkülöníthető komponensekből tevődnek össze. Ezek: a hosszú távú irányzatot kifejező trend, az ettől szabályos (többnyire havi vagy negyedéves) ingadozásokkal eltérő szezonális komponens, a (többnyire hosszabb távú) szabálytalan ingadozást, hullámzást kifejező ciklikus komponens és a véletlen összetevő. Ezek az összetevők alapvetően két módon: összegszerűen, illetve szorzatszerűen kapcsolódhatnak egymáshoz, az előbbi az ún. additív, az utóbbi a multiplikatív modellekhez vezet. Dekompozíciós idősormodellek

26 Dekompozíciós modell - egyszerű idősormodell, mely feltételezi, hogy összetevői (hosszú távú irányzat, szabálytalan ciklus, szezonális ingadozás, véletlen komponens) egymástól függetlenek, ezért szeparáltan lehet őket elemezni Dekompozíciós idősormodellek

27 Felírásuk: a hosszútávú alapirányzat, vagy trend silletvea szabályos rövid távú (szezonális) ingadozást leíró komponens, cilletvea szabálytalan hosszabb távú ingadozásokat leíró ciklikus komponens (konjunktúraciklus), és illetvea zavaró hatásokat leíró véletlen változók, amelyekről többnyire csak azt feltételezik, hogy 0, illetve 1 körül ingadoznak, azaz várható értékük 0, illetve 1. Dekompozíciós idősormodellek

28 Additív modell - olyan dekompozíciós modell, amelyiknél az összetevők összegszerűen kapcsolódnak egymáshoz Azt feltételezi, hogy mind a ciklus, mind a szezonális hatás, mind pedig a véletlen tag – állandó, a trendtől független – ingadozásokat végez. Multiplikatív modell - olyan dekompozíciós modell, amelyiknél az összetevők szorzatszerűen kapcsolódnak egymáshoz Itt az ingadozások a trendhez viszonyítva, annak arányában állandók. Dekompozíciós idősormodellek

29 A gyakorlati idősorok esetében nem mindig figyelhető meg az összes komponens!!!! Pl. Rövid idősorokból általában hiányzik a szabálytalan ciklus. A születések számában nem jellemző az éven belüli szezonalitás. Dekompozíciós idősormodellek

30 Ha csak a trend és a szezonális ingadozás van jelen: A szezonális ingadozás kilengése állandó: A szezonális ingadozás kilengése a trenddel arányosan változik:

31 A dekompozíciós modelleknél azt feltételezzük, hogy az egyes komponensek egymástól függetlenek, egymástól elkülöníthetők, ezért azok külön-külön vizsgálhatók - a dekompozíció elnevezése erre utal Dekompozíciós idősormodellek

32 Determinisztikus modellek: A véletlen passzív szerepet játszik, nem képezi lényeges alkotóelemét a modellnek. Akkor jó a modell, ha a véletlen minél kisebb befolyást gyakorol a folyamatra. Sztochasztikus modellek: Rövidebb távú elemzésekben, a véletlen a folyamat alkotó elemévé, aktív részesévé válik. Pl. a gazdaságban sokk (háború, természeti katasztrófa, külpiaci változások – gazdasági világválság) Az idősorelemzés további modelljei

33 Simító-előrejelző modellek: a múlt időbeli összefüggéseit vetítik előre egyszerűen kívülről adott vagy kalibrált paraméterekkel. ARMA-ARIMA (AutoRegresszív (Integrált) Mozgó Átlagolású) típusú modellek: sztochasztikus szemléletűek, az idősorok korábbi értékeinek és véletlen komponenseknek a bonyolult rendszerét tekintik alapul. Ezek a modellek általában az alakban írhatók fel. A mindenkori állapotot a korábbi állapotok és különböző késleltetésű véletlen komponensekkel ragadják meg, így a véletlennek aktív szerepet biztosítanak. Az idősorelemzés további modelljei

34 ARMA-ARIMA (AutoRegresszív (Integrált) Mozgó Átlagolású) típusú modellek folytatás: A paramétereket becslésekkel határozzák meg, a paraméterek és az egész modell érvényességét statisztikai próbákkal ellenőrzik – zárt logikájú rendszerben (Box–Jenkins–modellek) Frekvenciatartományon épített modellek: a látszólag szabálytalan ingadozások mögött különböző hullámhosszú szabályos periodikus mozgások vannak. spektrálanalízis (trigonometrikus függvények használata) waveletanalízis (más periodikus függvények alkalmazása) Idősoros regressziószámítás: idősorok közötti kapcsolatok leírása Az idősorelemzés további modelljei

35 Az analitikus trendszámítás a leggyakrabban alkalmazott szűrő és simító eljárás. Az analitikus trendszámítás gondolatmenete nagyon egyszerű: az idősor alkotta pontokra valamilyen, előre meghatározott típusú függvényt illesztünk úgy, hogy az a lehető legjobban illeszkedjék a pontokra, azaz a lehető legjobban leírja a pontok által hordozott tendenciát. Analitikus trend - a hosszú távú irányzatot leíró, előre meghatározott típusú (leggyakrabban lineáris vagy exponenciális) függvény, melynek független változója a t időváltozó Simítás, szűrés, előrejelzés Analitikus trendszámítás, lineáris és exponenciális trendek

36 Két kérdés: Milyen típusú függvénnyel akarjuk leírni az idősort? - lineáris és exponenciális függvény Hogyan mérjük az illeszkedést, és mikor tekintünk egy illeszkedést jónak? - a legkisebb négyzetek módszerét használják Legkisebb négyzetek módszere - a függvényillesztés leggyakrabban alkalmazott módszere: olyan függvényt keres, amelyik esetén a megfigyelések és az illesztett függvény megfelelő pontjai közti eltérések négyzetösszege minimális Analitikus trendszámítás, lineáris és exponenciális trendek

37 Az illesztett függvény és a megfigyelések közti pontonként vett távolságok előjele változhat – négyzetre emelés – a négyzetösszeg lesz az illeszkedés mérőszáma – minimalizálás azaz olyan paramétereket választunk a függvénynek, amelyek mellett ez a négyzetösszeg minimális. Analitikus trendszámítás, lineáris és exponenciális trendek

38 Illesztés a legkisebb négyzetek módszerével trend eltérés (reziduum) megfigyelés Jó illeszkedésRossz illeszkedés megfigyelés trend eltérés (reziduum)

39 Lineáris trendszámítás esetén az idősort az függvénnyel írjuk le. ahol a t az időváltozót kifejező értékek sorozata, a a lineáris trendfüggvény paraméterei, az ε t a t-edik időponthoz tartozó véletlen változó, és feltételezzük, hogy a várható értéke 0. A függvényt a paraméterek meghatározásával becsüljük, segítségükkel az idősor trend szerinti értékei a megfigyelési időszakra t=1, 2, …, n előállíthatók, és előre is tudunk becslést végezni velük (t=n+1, n+2, …). Analitikus trendszámítás, lineáris és exponenciális trendek

40 Az egyenlet a becsülni kívánt paraméterekkel felírva adódik, aholbecsült paraméterek úgy kaphatók, hogy minimalizáljuk a négyzetösszeget. Ezután a kifejezés minimumát kell keresnünk függvényében. Deriválva ezt szerint, majd a deriváltakat egyenlővé téve 0-val és átrendezve kapjuk az ún. normál- egyenleteket. Analitikus trendszámítás, lineáris és exponenciális trendek

41 A paraméter a t=0 időponthoz tartozó trendértéket (tengelymetszet), a pedig a trendfüggvény konstans meredekségét jelenti, azaz azt, hogy egy időegység alatt mennyivel változik a trend. Ez egyben azt is mutatja, hogy mekkora az idősorban az egy időszakra jutó átlagos változás (növekedés vagy csökkenés) mértéke. Mértékegységük az idősor eredeti mértékegységével azonos. A figyelembe veszi az idősor valamennyi értékét – ellentétben -vel. Analitikus trendszámítás, lineáris és exponenciális trendek

42 A t értékeket be kell helyettesíteni a trendegyenletbe és megkapjuk a trendfüggvény becsült értékeit (ex post előrejelzések). ismeretében minden időpontra kiszámíthatók a véletlen változó tapasztalati értékei, az ún. reziduumok: Minél jobb a lineáris függvény illesztése, a reziduumok értékei abszolút értékben annál kisebbek lesznek. Analitikus trendszámítás, lineáris és exponenciális trendek

43 Az illeszkedés jóságát a – szórásnégyzet analógiájára – a mutatóval számítjuk. Mivel a becslésre alkalmazott eljárás tulajdonságaiból adódóan 0, így az illeszkedés jóságát általában az reziduális variancia mutatójával szoktuk mérni. Alsó korlátja (tökéletes lineáris idősor esetén) 0, felső korlátja nincs, nagyobb értékei rosszabb illeszkedésre utalnak. Analitikus trendszámítás, lineáris és exponenciális trendek

44 Felsőoktatásban résztvevő hallgatók száma

45 A becslést a legkisebb négyzetek módszerével elvégezve először felírjuk a normálegyenletek számokkal kitöltött formáját majd az egyenletrendszert megoldva adódik. Lineáris trend számítása

46 Felsőoktatásban résztvevő hallgatók száma 1989 – 2004 között t=évek sorszáma ezer fő

47 A két becsült paraméter azt jelenti, hogy t=0 esetén, azaz 1988-ban a trend szerint 54,17 ezer hallgató iratkozott be és számuk évente átlagosan 10,73 ezer fővel nőtt. A függvény jó illeszkedését az ábra is megerősíti. Lineáris trend számítása


Letölteni ppt "STATISZTIKA II. 11. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék."

Hasonló előadás


Google Hirdetések