Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Események formális leírása, műveletek A  B : A esemény maga után vonja B-t A+B : Legalább az egyik esemény bekövetkezik AB : Események együttes bekövetkezése.

Hasonló előadás


Az előadások a következő témára: "Események formális leírása, műveletek A  B : A esemény maga után vonja B-t A+B : Legalább az egyik esemény bekövetkezik AB : Események együttes bekövetkezése."— Előadás másolata:

1 Események formális leírása, műveletek A  B : A esemény maga után vonja B-t A+B : Legalább az egyik esemény bekövetkezik AB : Események együttes bekövetkezése

2 Valamely kísérlet egy konkrét kimenetelét, elemi eseménynek nevezzük, és ω-val jelöljük. Eseménytér: az elemi események összessége, halmaza: Ω Esemény: a kísérlettel kapcsolat megfogalmazható bármely jelenség, az eseménytér valamely részhalmaza. Jele latin nagy betű. Biztos esemény: olyan esemény, amely a kísérlet során mindig bekövetkezik: Ω Lehetetlen esemény: olyan esemény, amely a kísérlet során soha sem következik be: 0 (nulla) Egymást kizáró két esemény, ha a kísérlet során együttes bekövetkezésük lehetetlen esemény, tehát AB=0. Ellentett (komplementer) esemény akkor, és csak akkor következik be, ha maga az esemény nem következik be. Események különbsége (A-B) alatt olyan eseményt értünk, amikor A bekövetkezik, de B nem.

3 Valószínűség fogalma A esemény valószínűségét P(A)-val jelöljük, ahol 0≤P(A)≤1 valószínűség =

4 Valószínűség tulajdonságai P(0)=0P(Ω)=1 P(A+B)=P(A)+P(B)-P(AB) Ha A  B, akkor P(A)≤P(B) A esemény B-re vonatkozó feltételes valószínűsége (A vizsgálata abban az eseménytérben, melyben biztos esemény B) Bayes-tétel:

5 Példa Bayes-tételre Öt doboz mindegyikében öt golyó van, amelyek közül rendre egy, kettő, három, négy öt fehér. Találomra kiválasztunk egy dobozt, és kiveszünk belőle egymás után visszatevéssel két golyót. Ha mind a kettő fehér, akkor mennyi a valószínűsége, hogy a két fehér golyót tartalmazó dobozból valók? Megoldás: P(B i ) : i. dobozból húztunk. P(A/B i ): az i. dobozból két fehéret húzunk. P(B i /A): megoldandó kérdés.

6 Valószínűségi változók Tekintsük valamely kísérlet elemi eseményeinek halmazát. Minden egyes elemi eseményhez rendeljünk egy és csakis egy valós számértéket. Ezen hozzárendeléssel értelmezett függvényt valószínűségi változónak nevezzük és , , … betűkkel jelöljük. A  valószínűségi változót diszkrétnek nevezzük, ha lehetséges értékei véges vagy megszámolható számosságu halmazt alkotnak. A nem negatív  1,  2, …,  n számokat valószínűség eloszlásnak nevezzük, ha összegük 1.

7 Valószínűségi változók tulajdonságai A valószínűségi változó módusza az a  i érték, amelyre P(  i ) a legnagyobb értéket veszi fel. Valószínűségi változó várható értéke diszkrét esetben M(  )=  p i x i, ahol p i az esemény bekövetkezésének valószínűsége x i a valószínűségi változó értéke; folytonos esetben pedig M(  )=  x f(x) dx. Szórásnégyzete: D²(  ) = M[  -M(  )]² = M(  ²)-[M(  )]², ami diszkrét esetben D²(  ) =  x² p - [  x p]², míg folytonos esetben D²(  ) =  x ² f(x) dx – [  x f(x) dx]². A valószínűségi változó szórása, a szórásnégyzet pozitív négyzetgyöke.

8 Eloszlásfüggvény FxFx x

9 Sűrűségfüggvény


Letölteni ppt "Események formális leírása, műveletek A  B : A esemény maga után vonja B-t A+B : Legalább az egyik esemény bekövetkezik AB : Események együttes bekövetkezése."

Hasonló előadás


Google Hirdetések