Tudásalapú rendszerek

Slides:



Advertisements
Hasonló előadás
Előadó: Kovács Zita 2013/2014. II. félév TUDÁSALAPÚ RENDSZEREK Leíró logikák.
Advertisements

Étrend-kiegészítő vagy gyógyszer? Határterületi termékek elhatárolásának szempontjai Medical Tribune konferencia október 1. Dr.
FOL függvényjelekkel Zsebibaba anyja A 2 harmadik hatványa a oszlopában az első blokk Ezek is nevek, de nem in- konstansok Azért, mert összetettek Predikátum:
Az új közbeszerzési törvény megalkotásának körülményei, várható jövőbeli változások május 26. Dr. Kovács László Miniszterelnökség Közbeszerzési Szabályozási.
Időzített átmeneti rendszerek Legyen A egy ábécé, A’= A  {  (d)| d  R  0 }. A’ feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T, ,
Irattári és levéltári funkciók a tanúsított szoftverekben Vágujhelyi Ferenc.
1 Számítógép Hálózatok A hálózatok kialakulása, alapfogalmak Készítette: Csökmei István Péter ( CsIP ) Szegedi Tudományegyetem Természettudományi Kar levelező.
A képzett szakemberekért AZ ÖNÉRTÉKELÉS FOGALMA, LÉNYEGE, SZEREPE A MINŐSÉGFEJLESZTÉSBEN 3.2. előadás.
Varga Aranka Inkluzív oktatási rendszer. Iskola funkciói – társadalmi elvárások Funkciók: Tudásszerzés és kompetenciafejlesztés folyamatának terepe Formális.
A vállalatok marketingtevékenysége és a Magyar Marketing Szövetség megítélése Kutatási eredmények az MMSZ részére (2008. július)
EU pályázati programok A szervezet / változások 1.A pályázók adminisztrációs terheinek csökkentése a projektfejlesztési, pályázati szakaszban.
Gazdasági jog IV. Előadás Egyes társasági formák Közkeresleti társaság, betéti társaság.
KÉPZŐ- ÉS IPARMŰVÉSZET ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA (középszintű) május-június.
Gazdasági informatika - bevezető
vizuális megismerés – vizuális „nyelv” vizuális kultúra
A kérdőívek, a kérdőívszerkesztés szabályai
Adatbázis normalizálás
Gyűjtőköri szabályzat
Duális képzés a társadalmi felelősségvállalás szemszögéből
Microsoft Office Publisher
A közigazgatással foglalkozó tudományok
videós team Team vezetője: Tariné Péter Judit Tagok:
HÉL (Hasonló értelmű licit)
Sz&p prof.
Az integrált áramkörök (IC-k) típusai és tervezése
T.R. Adatbázis-kezelés - Alapfogalmak Adatbázis:
A Hazug paradoxona Minden krétai hazudik. (Mondta egy krétai.)
Követelményelemzés Cél: A rendszer tervezése, a feladatok leosztása.
Algoritmusok és Adatszerkezetek I.
Struktúra predikció ápr. 6.
Az Országos Egészségfejlesztési Intézet fejlesztési projektjei az iskolai egészségfejlesztés területén DR. TÖRÖK KRISZTINA.
Ismeretalapú technológia
A legnagyobb közös osztó
Hipotézisvizsgálat.
Tömör testmodellek globális kapcsolatai
Piaci kockázat tőkekövetelménye
Kijelentéslogikai igazság (tautológia):
Adatbázis-kezelés (PL/SQL)
FÜGGVÉNYEK Legyen adott A és B két nem üres (szám)halmaz. Az A halmaz minden eleméhez rendeljük hozzá a B halmaz pontosan egy elemét. Ezt az egyértelmű.
INFOÉRA 2006 Véletlenszámok
Közigazgatási alapvizsga a Probono rendszerben
Adatbázis alapfogalmak
Rendszerfejlesztés gyakorlat
„Mindegy, hogy képességeid mekkorák, fő, hogy a tőled telhető legjobbat formáld belőlük és általuk.” (Weöres Sándor)
STRUKTURÁLT SERVEZETEK: funkció, teljesítmény és megbízhatóság
CONTROLLING ÉS TELJESÍTMÉNYMENEDZSMENT DEBRECENI EGYETEM
Tilk Bence Konzulens: Dr. Horváth Gábor
Tájékoztató az Önkormányzati ASP Projektről
Felhasználóképzés a kórházban
Számítógépes szimulációval segített tervezés
AVL fák.
Informatikai gyakorlatok 11. évfolyam
A villamos installáció problémái a tűzvédelem szempontjából
Új pályainformációs eszközök - filmek
Bináris kereső fák Definíció: A bináris kereső fa egy bináris fa,
Matematikai Analízis elemei
A számítógép története
5. Előadás tartalma Magas szintű adatbázismodellek Adatmodellezés
I. HELYZETFELMÉRÉSI SZINT FOLYAMATA 3. FEJLESZTÉSI FÁZIS 10. előadás
Konzuli és Állampolgársági Főosztály, Schengeni Vízum Osztály
Matematika 11.évf. 1-2.alkalom
Valós számok Def. Egy algebrai struktúra rendezett test, ha test és rendezett integritási tartomány. Def. Egy (T; +,  ;  ) rendezett test felső határ.
Matematika II. 5. előadás Geodézia szakmérnöki szak 2015/2016. tanév
Műveletek, függvények és tulajdonságaik Mátrix struktúrák:
SQL jogosultság-kezelés
Bevezetés Tematika Számonkérés Irodalom
A geometriai transzformációk
Pszichológia BA műhelymunka és szakdolgozat tájékoztató
Algoritmusok.
Hagyományos megjelenítés
Előadás másolata:

Tudásalapú rendszerek Előadó: Kovács Zita 2016/2017. I. félév Leíró logikák

Leíró logikák description logic - DL ismeretábrázolási nyelvcsaládot alkotnak fogalom, individuum (egyed), szerep fogalmakat használja fogalom: individuumok halmazának reprezentálására szolgál szerep: indiviuumok közötti bináris relációt ábrázolja a fogalom általános, az individuum speciális, a fogalom tulajdonságait viseli

Alapelvek A fogalom, szerep és individuum a következő alapelveknek felelnek meg: A fogalom és a szerep strukturális leírásában konstruktorok vesznek részt. A fogalom és a szerep leírásához egy szemantika kapcsolódik az interpretáción keresztül. A különböző műveleteket ezen szemantikával összhangban hajtjuk végre. A fogalom, a szerep és az individuum a következő alapelveknek felel meg.

Alapelvek Az ismereteket különböző szinteken vesszük figyelembe: A fogalmak, szerepek ábrázolása és a műveleteik a terminológia szintjén, az individuumok leírása és műveleteik a tények és a hozzárendelések szintjén jelennek meg. A szakirodalomban a terminológia szintjét TBox-nak, a tények és hozzárendelések szintjét ABox-nak nevezik.

Alapelvek A fogalmakat (és esetenként a szerepeket) hierarchiába rendezhetjük a rajtuk értelmezett alárendelés (subsumption) reláció alapján. Azt mondhatjuk, hogy egy C fogalom alárendeli a D fogalmat, ha C általánosabb, mint D abban az értelemben, hogy a D által reprezentált individuumok halmazát C tartalmazza. A fogalom, a szerep és az individuum a következő alapelveknek felel meg.

Alapelvek a következtető rendszerben két művelet jelenik meg: az osztályozás (classification) és az egyedesítés (instanciation) Az osztályozást a fogalmakra és az egyedekre alkalmazzuk. Lehetővé teszi, hogy egy adott fogalom, vagy szerep helyét meghatározzuk a hierarchiában. A leíró logikák következtetőrendszerében két művelet jelenik meg:

Alapelvek a következtető rendszerben két művelet jelenik meg: az osztályozás (classification) és az egyedesítés (instanciation) Az egyedesítés lehetővé teszi, hogy megtaláljuk azt a fogalmat, amelynek egy adott individuum a megjelenési formája lehet. (Ez a fogalom eltér az OO nyelvekben szokásos egyedesítés fogalmától, hiszen ott egy adott osztályból hozunk létre egyedeket.) A leíró logikák következtetőrendszerében két művelet jelenik meg:

Példák Legyen EMBER egy fogalom-név és van-gyereke egy szerep-név. Ekkor a szülő fogalmat a következő kifejezéssel írhatjuk le: EMBER ⊓ ∃van-gyereke.EMBER (ez lesz a SZÜLŐ leíró a későbbiekben; szülő: olyan egyedek halmaza, akik emberek és legalább egy gyerekük van) Legyen NŐ egy fogalom-név. Ekkor az anya és apa fogalmakat a következő kifejezésekkel írhatjuk le: EMBER ⊓ NŐ ⊓ ∃van-gyereke.EMBER EMBER ⊓ ¬NŐ ⊓ ∃van-gyereke.EMBER

ember(x) ∧ ∃y(van-gyereke(x,y) ∧ ember(y)), Példák Könnyen belátható, hogy a fogalomnevek unáris, a szerepek bináris predikátummal a fogalom definiáló kifejezések egyváltozós elsőrendű formulával írhatók le a klasszikus logikában. Például, a szülő fogalmat elsőrendű formulával megadva: ember(x) ∧ ∃y(van-gyereke(x,y) ∧ ember(y)), ahol x egy szabad változó.

ember(x) ∧ ∃y(van-gyereke(x,y) ∧ ember(y)), Példák Például, a szülő fogalmat elsőrendű formulával megadva: ember(x) ∧ ∃y(van-gyereke(x,y) ∧ ember(y)), ahol x egy szabad változó. (Egy adott interpretációban a szülő jelentését formálisan úgy specifikálhatjuk, mint egyedek egy halmazát, amely kielégíti a megfelelő elsőrendű formulát a szabad változója helyettesítésekor.)

Következtető rendszer az ismeretbázisban tárolt ismeretekből újabb ismeretet vezet le az alárendelés és az egyedesítés relációkon alapul az előbbi példákban a szülő fogalom alárendeli az anya és az apa fogalmakat: ANYA ⊑ SZÜLŐ és APA ⊑ SZÜLŐ ezek a rendszerek automatikusan érzékelik az alárendelési relációkat -> a fogalmakat alárendelési hierarchiában helyezik el

Leíró logikák kialakulásának története keretek és szemantikus hálók ismeretábrázolási formalizmusából származnak nem rendelkeztek formális szemantikával, pontos értelmezés a programozó feladata volt

Leíró logikák kialakulásának története Például az alábbi szemantikus háló értelmezése kérdéses: Béka Zöld színe Jelentése lehet: Minden béka zöld. Minden béka részben zöld. Vannak zöld békák. A békák tipikusan zöldek, de lehetnek kivételek.

Leíró logikák kialakulásának története Az alábbi keret alapú ismeretrészletben is felmerülhetnek eldöntetlen kérdések: Frame Ember endframe. Frame Magas-fiú-apja is-a Ember van-gyereke Magas Frame Magas Frame Peter instance-of Magas-fiú-apja

Leíró logikák kialakulásának története Nem derül ki, hogy Magas-fiú-apja minden példányának az összes gyereke magas vagy hogy minden apának ebben az osztályban van legalább egy magas gyereke

Leíró logikák kialakulásának története szemantikai hiányosság -> újabb módszerek 1977, Brachmann: „strukturált öröklési háló” (új grafikus reprezentációs módszer) ennek implementációja: KL-ONE (első leíró logikai rendszer) számos további, pl: LOOM(1991), CLASSIC(1991)

Leíró nyelvek szintaxisa (fogalom-nevek, individuum-nevek, szerep-nevek, konstruktorok) ahol a fogalom-nevek: különböző fogalmakat, az idividuum-nevek: individuumokat, a szerep-nevek: szerepeket szimbolizálnak.

Leíró nyelvek szintaxisa (fogalom-nevek, individuum-nevek, szerep-nevek, konstruktorok) A konstruktorok a következők lehetnek: konjunkció (⊓), diszjunkció (⊔), negáció (¬), univerzális kvantor (∀), egzisztenciális kvantor (∃), számosság-korlátozás ( ≥n, ≤n).

Leíró nyelvek szintaxisa a konstruktorok fogalom- és szerep-neveket kötnek össze így jönnek létre a fogalom- és szerep-kifejezések a fogalom-nevek önmagukban fogalom-kifejezések ha C és D fogalom-kifejezés, akkor C*D és ◊C is fogalom-kifejezések, ahol * valamely bináris és ◊ valamely unáris konstruktor

jelölések fogalom-nevek: A, B szerep-nevek: P individuumok neve: a, b, o fogalom-kifejezés: C, D szerep-kifejezés: Q, R top: ⊤ (legáltalánosabb fogalom) bottom: ⊥ (leginkább specifikus fogalom)

Leíró nyelvek a megengedett konstruktorok határozzák meg alapnyelv: FL (frame-based description language) konjunkció, univerzális kvantor, nem minősített egzisztenciális kvantor

Leíró nyelvek AL={⊤, ⊥, ¬A, C⊓D, ∀R.C, ∃R} AL nyelv: FL konstruktorain kívül: top, bottom, fogalom-név negáció (fogalom-kifejezés nem negálható) formálisan: AL={⊤, ⊥, ¬A, C⊓D, ∀R.C, ∃R}

Leíró nyelvek nyelveket, ahol konstruktorokat jelöli. az AL nyelvcsaládot a megengedett konstruktorokkal kiegészítve kapjuk: AL[U][C][E][N][R] nyelveket, ahol U a diszjunkció, C a negáció, E az egzisztenciális kvantor, N a számosság korlátozás, R a szerep konjunkció konstruktorokat jelöli.

Példák – objektumok, osztályok Fejezzük ki az alábbi példát Hallgató Személy név: sztring cím: sztring felvette: kurzus klasszikus logikai formulával, leíró logikában fogalom definícióval!

Példák – objektumok, osztályok Hallgató Személy név: sztring cím: sztring felvette: kurzus klasszikus logikai formulával: {x | hallgató(x)} = {x | személy(x) ∧ (∃ynév(x,y) ∧ string(y)) ∧ (∃zcím(x,z) ∧ string(z)) ∧ (∃wfelvette(x,w) ∧ kurzus(w))}

Példák – objektumok, osztályok Hallgató Személy név: sztring cím: sztring felvette: kurzus leíró logikában fogalom definícióval: HALLGATÓ = SZEMÉLY ⊓ ∃név.STRING ⊓ ∃cím.STRING ⊓ ∃felvette.KURZUS

Példák – objektumok, egyedek Fejezzük ki az alábbi példát s1: Hallgató név: „Jani” cím: „Akácfa utca” felvette: I3102 leíró logikában egyedhozzárendeléssel! HALLGATÓ(s1) név(s1,”Jani”) cím(s1, „Akácfa utca”) felvette(s1,I3102)

Szemantikus háló Fejezzük ki az alábbi példát leíró logikában alárendeléssel! Kurzus Oktató tanít Hallgató Demonstrátor felvette HALLGATÓ ⊑ ∃felvette.KURZUS OKTATÓ ⊑ ∃tanít.KURZUS DEMONSTRÁTOR ⊑ HALLGATÓ DEMONSTRÁTOR ⊑ OKTATÓ

Nem pontosan definiált szemantikus háló Béka Zöld színe Ezen szemantikus háló különböző lehetséges változatai leíró logikában: Minden béka részben zöld: BÉKA ⊑ ∃színe.ZÖLD Minden béka zöld: BÉKA ⊑ ∀színe.ZÖLD Vannak zöld békák: BÉKA(x), színe(x,y), ZÖLD(y)

Leíró nyelvek szemantikája fogalom: interpretációs alaphalmaz részhalmaza szerep: az alaphalmaz önmagával alkotott Descartes-szorzatának részhalmaza legyen az interpretációs alaphalmaz: O

Leíró nyelvek szemantikája az a individuum interpretációja: aI ∈ O az A fogalom-név interpretációja: AI ⊆ O a C fogalom CI interpretációja a C fogalmat alkotó individuumok interpretációiból álló halmaz, azaz ha C={ci}, ahol i ∈ indexhalmaz, akkor CI = {ciI}, tehát CI ⊆ O

Leíró nyelvek szemantikája a ∆I az összes CI halmaza, azaz az interpretációs alaphalmaz (O) hatványhalmaza az R szerep interpretációja RI ⊆ O x O

Az ALCNR nyelv szemantikája Egy I=(∆I , .I ) interpretáció egy interpretációs alaphalmaz és egy interpretációs függvény együttese, ahol az .I interpretációs függvény egy fogalmat hozzárendel a ∆I egy részhalmazához és egy szerepet a ∆Ix ∆I egy részhalmazához úgy, hogy a következő azonosságok fennálljanak.

Azonosságok TI = ∆I ⊥I ∅ (C⊓D)I CI ∩ DI (C⊔D)I CI ∪ DI (¬C)I ∆I \CI (∀R.C)I {a∈O|∀b:(a, b)∈ RI →b ∈ CI} (∃R.C)I {a∈O|∃b:(a, b)∈ RI ∧ b ∈ CI} (≥ nR)I {a∈O| |{b ∈ O|(a,b)∈ RI}| ≥ n} (≤ nR)I {a∈O| |{b ∈ O|(a,b)∈ RI}| ≤ n} (R1⊓…⊓Rn)I R1I∩…∩RnI

Az ALCNR nyelv szemantikája A ∀ konstruktor korlátozást idéz elő egy attribútum értékein. A (∀R.C) fogalom interpretációja olyan egyedek halmaza, mellyel minden R relációban lévő egyed a C fogalomhoz tartozik. (∀gyereke.ORVOS): megfelel egy fogalomnak, amelynek minden gyereke orvos. Ezzel a módszerrel egy keretben egy slot értékére írhatunk elő korlátozást.

Az ALCNR nyelv szemantikája A (∃R.C) fogalom interpretációja egy olyan egymással R relációban lévő (x,y) elempár létezését mondja ki, ahol y a C fogalom egyede. (∃gyereke.ZENÉSZ): azon egyedek halmaza, akiknek van zenész gyereke (ahol a gyerek(x,y) szerep jelentése y gyereke x-nek) Ezen az úton vezethetünk be egy slotot a keretbe.

Az ALCNR nyelv szemantikája A (≥ n R) fogalom interpretációja az R szerephez kapcsolódó egyedek halmazának számosságát korlátozza. (≥ 3 gyerek): azon egyedekből álló halmaz, amelyben minden elemnek legalább 3 egyeddel van a gyerek szerepen keresztül kapcsolata (azaz akiknek legalább 3 gyereke van)

Az ALCNR nyelv szemantikája Két fogalmat (C, D) ekvivalensnek nevezünk (C≡D), ha CI=DI minden I interpretációban. Az egzisztenciális kvantornak (∃R.C) egy speciális esete a nem minősített egzisztenciális kvantor (∃R) , amikor C≡T. Interpretációja: (∃R)I={a∈O| ∃b∈O: (a,b)∈RI}

Leíró logikák alapfogalmai Alapfogalmak Szintaxis Szemantika fogalom-név A AI ⊆ ∆I top ⊤ ∆I bottom ⊥ ∅ individuum-nevek (∆I ) {a1, a2, …, an} {a1I , a2I , …, anI } szerep-név P PI ⊆ ∆I x ∆I

Fogalom- és szerep-formáló konstruktorok Szintaxis Szemantika konjunkció C⊓D CI ∩ DI diszjunkció (U) C⊔D CI ∪ DI negáció (C) ¬C ∆I \CI univerzális kvantor ∀R.C {a1|∀a2:(a1, a2) ∈ RI →a2 ∈ CI}

Fogalom- és szerep-formáló konstruktorok Szintaxis Szemantika egzisztenciális kvantor (E) nem minősített egzisztenciális kvantor ∃R.C ∃R {a1|∃a2:(a1, a2) ∈ RI ∧ a2 ∈ CI} {a1|∃a2:(a1, a2) ∈ RI ∧ a2 ∈ O} számosság-korlátozás (N) (≥ n R) (≤ n R) {a1| |{a2|(a1, a2) ∈ RI }| ≥n} {a1| |{a2|(a1, a2) ∈ RI }| ≤n} szerep-konjunkció (R) Q⊓R QI ∩ RI

Számosságkorlátozások A (≥ n R) és (≤ n R) jelentése: azon egyedekből álló halmaz, amelyek mindegyikéhez legalább n, illetve legfeljebb n különböző, vele R-kapcsolatban lévő egyed található. Tehát (≥ 1 R) ekvivalens: (∃R.T). nem lehet valamely fogalomhoz tartozó egyedek darabszámára korlátozást tenni (nincs: „legalább 3 kékszemű gyerekkel bíró” halmaz)

Hierarchia a fogalmak és szerepek körében Egy C fogalom alárendeltje a D fogalomnak (jelölésben C ⊑ D), ha tetszőleges I interpretáció esetén CI ⊆ DI. reflexív antiszimmetrikus tranzitív azaz parciális rendezési reláció, amely a fogalmakat egy hierarchiába szervezi

Hierarchia a fogalmak és szerepek körében fogalmakat jellemzi: saját lokális leírójuk az alárendeltjeikkel megosztott leírásuk maximális „elem”: top fogalom minden más fogalom ennek az alárendeltje minimális „elem”: bottom amely valamennyi fogalomnak alárendeltje

Hierarchia a fogalmak és szerepek körében Mivel ∆I az alárendelés műveletére nézve háló; a fogalmak konjunkciója és diszjunkciója tulajdonképpen halmaz metszet és unió, amelyekre teljesülnek a hálóaxiómák: A⊓A ≡ A és A⊔A ≡ A (idempotencia) A⊓B ≡ B⊓A és A⊔B ≡ B⊔A (kommutativitás) A⊓(B⊓C) ≡ (A⊓B)⊓C és A⊔(B⊔C) ≡ (A⊔B)⊔C (asszociativitás) A⊓(A⊔B) ≡ A és A ⊔(A ⊓ B) ≡ A (elnyelés)

Hierarchia a fogalmak és szerepek körében További tulajdonságok: Ha D⊑C és D⊑E, akkor D⊑C⊓E. Ha D⊑C és E⊑C, akkor D⊔E⊑C. Ha D⊑C, akkor D⊓X⊑C, ahol X tetszőleges fogalom. Ha D⊑C, akkor D⊑C⊔X, ahol X tetszőleges fogalom.

Hierarchia a fogalmak és szerepek körében Az ALCN nyelv hálót alkot az alárendelés műveletét tekintve, ahol a C és D fogalmak legkisebb felső korlátja C⊓D, legnagyobb alsó korlátja pedig C⊔D.

Egyszerű példák alárendelésre (FELNŐTT ⊓ FÉRFI) ⊑ FELNŐTT (FELNŐTT ⊓ FÉRFI ⊓ GAZDAG) ⊑ (FELNŐTT ⊓ FÉRFI) (∀gyereke.(FELNŐTT ⊓ FÉRFI)) ⊑ (∀gyereke.FELNŐTT) ((∀gyereke.FELNŐTT) ⊓(∃gyereke)) ⊑ (∀gyereke.FELNŐTT) (≥ 2 gyerek) ⊑ (≥ 3 gyerek)

Az SHIQ nyelvcsalád a mai gyakorlatban általánosan alkalmazott nyelvek közül a legnagyobb kifejezőerejű amelyhez hatékony következtetési algoritmus is rendelkezésre áll az ALCN nyelv kiterjesztéseként megengedi a szerephierarchiák megadását, tranzitív és inverz szerepek használatát

Az S nyelvkiterjesztések SHIQ Az S nyelvkiterjesztések legegyszerűbb tag az S nyelv, amelyet az ALC nyelvből származtatjuk, úgy hogy megengedjük a tranzitív szerepek használatát például kijelenthetjük, hogy a része, őse, leszármazottja szerepek tranzitívak

Szerephierarchiák - a H nyelvkiterjesztések SHIQ Szerephierarchiák - a H nyelvkiterjesztések leírhatjuk, hogy egyik szerep általánosabb, mint a másik például kijelenthetjük, hogy a barátja kapcsolatnál általánosabb az ismerőse (barátja ⊑ ismerőse)

Inverz szerepek- azI nyelvkiterjesztés SHIQ Inverz szerepek- azI nyelvkiterjesztés megengedi inverz szerepek használatát jelölésben az R szerep inverze: Inv(R) például Inv(gyereke)=szülője

Inverz szerepek- azI nyelvkiterjesztés SHIQ Inverz szerepek- azI nyelvkiterjesztés az inverz szerepek jól alkalmazhatóak a rész-egész kapcsolatok mindkét irányú megnevezésére például Inv(része)=tartalmazója szerepek esetén: része(autó, motor) esetén tartalmazója(motor, autó) kapcsolat is fennáll

Minősített számosságkorlátozás – aQ nyelvkiterjesztés SHIQ Minősített számosságkorlátozás – aQ nyelvkiterjesztés a minősített számosságkorlátozás az N nyelvkiterjesztés, azaz (≥ n R) és (≤ n R) minősítetlen számosságkorlátozások általánosítása, azzal a megszorítással, hogy az R szerep nem lehet tranzitív (nem lenne eldönthető, ha megengednénk)

Minősített számosságkorlátozás – aQ nyelvkiterjesztés SHIQ Minősített számosságkorlátozás – aQ nyelvkiterjesztés a minősítetlen számosságkorlátozások a Q nyelvkiterjesztés (≥ n R.C) és (≤ n R.C) speciális esetei, ahol C≡ T leírhatjuk például a „legalább három iskolás gyerekű szülő” fogalmát: (≥ 3 gyereke.iskolás)

Az SHIQ nyelv szemantikája Az ALCNR-hez hasonlóan definiáljuk: Egy I=(∆I , .I ) interpretáció egy interpretációs alaphalmaz és egy interpretációs függvény együttese, ahol az .I interpretációs függvény egy fogalmat hozzárendel a ∆I egy részhalmazához és egy szerepet a ∆Ix ∆I egy részhalmazához úgy, hogy a következő azonosságok fennálljanak.

Azonosságok TI = ∆I ⊥I ∅ (C⊓D)I CI ∩ DI (C⊔D)I CI ∪ DI (¬C)I ∆I \CI (∀R.C)I {a∈O|∀b:(a, b)∈ RI →b ∈ CI} (∃R.C)I {a∈O|∃b:(a, b)∈ RI ∧ b ∈ CI} (≥ nR.C)I {a∈O| |{b ∈ O|(a,b)∈ RI∧ b ∈ CI}| ≥ n} (≤ nR.C)I {a∈O| |{b ∈ O|(a,b)∈ RI∧ b ∈ CI}| ≤ n} (Inv(R))I {(b,a)∈ ∆I x ∆I |(a,b)∈ RI}

Leíró ismeretbázis fogalma a leíró nyelvekben az ismeretábrázolás két szinten valósul meg a terminológia szintjén vezetjük be a fogalmakat, a szerepeket és az adott ALCNR leíró nyelvnek megfelelően az alárendelési relációkat

Leíró ismeretbázis fogalma a fogalmak és a szerepek lehetnek primitívek (atomiak) összetettek (definiáltak) a primitív fogalmakat (szerepeket) alárendelési relációval adjuk meg az összetett fogalmakat (szerepeket) konstruktorok segítségével adjuk meg (jelölésben: ≐)

Leíró ismeretbázis fogalma a tények és hozzárendelések szintjén az egyes fogalmakhoz tartozó individuumokat és az egyes szerepekhez tartozó individuum párokat, mint tényeket soroljuk fel jelölésben: a hozzárendelések C(a) és R(a,b) alakúak a hozzárendeléseket általánosan α hozzárendelésnek jelöljük a továbbiakban

Leíró ismeretbázis fogalma az ALCNR nyelvben leíró ismeretbázisnak nevezzük (jelölése: Σ=(T,A)) a (T,A) párost, ahol T a fogalmak és szerepek leírása a nyelv eszközeivel A pedig a tények és egyed-hozzárendelések megadása C(a) vagy R(a,b) alakban

Leíró ismeretbázis fogalma Az I interpretáció modellje a C fogalomnak, ha CI nem üreshalmaz. Egy C fogalom kielégíthető, ha van modellje. Legyen I egy interpretáció. a C(a) hozzárendelést kielégíti az interpretáció, ha aI ∈ CI az R(a,b) hozzárendelést kielégíti az interpretáció, ha (aI , bI )∈ RI

Leíró ismeretbázis fogalma Egy I interpretáció modellje a Σ=(T,A) leíró ismeretbázisnak, ha I kielégíti A minden hozzárendelését. A Σ=(T,A) leíró ismeretbázis kielégíthető, ha létezik modellje. Az α hozzárendelés logikai következménye a Σ=(T,A) leíró ismeretbázisnak, ha Σ minden modellje kielégíti α-t. Jelölésben: Σ|=α.

Példa leíró ismeretbázisra a T Tbox négy fogalmat vezet be: t1 Egy kurzus oktatója vagy professzor vagy egyetemi diplomával rendelkező diák (PhD hallgató). t2 A professzorok doktori diplomával rendelkező személyek. t3 Ha valakinek doktori diplomája van, akkor biztosan van egyetemi diplomája is. t4 A doktori és egyetemi diplomák különbözőek.

Példa leíró ismeretbázisra az A Abox hozzárendelések: a1 János tanítja a Prog_kurzust. a2 Jánosnak legfeljebb egy diplomája van. a3 A Prog_kurzus egy kurzus. (Megj: a1 azt mutatja, hogy János nem lehet professzor, hiszen legfeljebb egy diplomája van, s ez a1 és a3 miatt, azaz mert János tanítja a Prog-kurzust, feltétlenül egyetemi diploma)

Példa leíró ismeretbázisra Legyen Σ=(T,A), ahol T={ SZEMÉLY ⊑ T PROFESSZOR ⊑ SZEMÉLY DIÁK ⊑ SZEMÉLY KURZUS ⊑ T FOKOZAT ⊑ T EGYETEMI ⊑ FOKOZAT DOKTORI ⊑ FOKOZAT

Példa leíró ismeretbázisra tanító ⊑ toprole diploma ⊑ toprole (∃tanító.KURZUS) ⊑ (PROFESSZOR ⊔ (DIÁK ⊓ (∃ diploma.EGYETEMI))) PROFESSZOR ⊑ (∃ diploma.DOKTORI) (∃diploma.DOKTORI) ⊑ (∃ diploma.EGYETEMI) (DOKTORI ⊓ EGYETEMI) ⊑ ⊥ } A={ tanító(János, Prog_kurzus) (≤ 1 diploma)(János) KURZUS(Prog_kurzus)

Példa leíró ismeretbázisra A következő interpretáció egy modellje az előbbi Σ=(T,A) leíró ismeretbázisnak, ahol az interpretációs alaphalmaz O={Jani, Programozás, Jani_egyetemi_diploma}. Ekkor a JánosI = Jani Prog_kurzusI = Programozás DIÁKI = {Jani} ProfesszorI = ∅

Példa leíró ismeretbázisra KURZUSI = {Programozás} EGYETEMII = {Jani_egyetemi_diploma} DOKTORII = ∅ tanítóI = {(Jani, Programozás)} diplomaI = {(Jani, Jani_egyetemi_diploma)} interpretáció kielégíti A minden hozzárendelését.

Következtetési eljárások egy leíró ismeretbázisban alárendelések ellenőrzése eldönthetjük, hogy egy C fogalom alárendeli-e a D fogalmat, vagy sem ez az alapja az osztályozási műveletnek, ami meghatározza egy fogalom közvetlen leszármazottait egy fogalom kielégíthetőségének ellenőrzése eldönthetjük, hogy egy fogalomnak létezik-e modellje, azaz vannak-e egyedei valamely interpretációban

Következtetési eljárások egy leíró ismeretbázisban egy leíró ismeretbázis kielégíthetőségének vizsgálata itt ellenőrizzük, hogy létezik-e modellje egyedesítés ellenőrizzük, hogy egy b individuum egyede-e a C fogalomnak a Σ leíró ismeretbázisban, azaz Σ|=C(b) teljesül-e ez az eljárás azon fogalmakat keresi meg, amelyeknek a b individuum egyede és amelyek ugyanakkor a leginkább specifikusak az alárendelési hierarchiában

Példa az egyedesítésre lsd könyv

Nyíltvilág és zárt világ szemantika hasonlóság az adatbázisokkal különbség a nyíltvilág és zártvilág szemantika között adatbázis: zártvilág mindig egyetlen interpretációt képvisel (amelyben az adott egyedek közötti relációk fennállnak) a lekérdezések erre az interpretációra vonatkoznak csak az az állítás igaz, amely megjelenik az ab rekordjai között

Nyíltvilág és zárt világ szemantika leíró logikák, Abox: nyíltvilág Abox állítás: csak olyan lehet, amelyik minden interpretációban igaz esetszétválasztás

Nyíltvilág és zárt világ szemantika - Példa gyereke(IOKASZTE, OIDIPUSZ) gyereke(OIDIPUSZ, POLUNEIKESZ) gyereke(IOKASZTE, POLUNEIKESZ) gyereke(POLUNEIKESZ, THERSZANDROSZ) Apagyilkos(OIDIPUSZ) ¬Apagyilkos(THERSZANDROSZ) Kérdés: van-e Iokasztének olyan gyereke, aki apagyilkos és akinek van nem apagyilkos gyereke? Σ|=(∃gyereke.(Apagyilkos ⊓ ∃gyereke.¬Apagyilkos))(IOKASZTE)?

Nyíltvilág és zárt világ szemantika - Példa gyereke(IOKASZTE, OIDIPUSZ) gyereke(OIDIPUSZ, POLUNEIKESZ) gyereke(IOKASZTE, POLUNEIKESZ) gyereke(POLUNEIKESZ, THERSZANDROSZ) Apagyilkos(OIDIPUSZ) ¬Apagyilkos(THERSZANDROSZ) adatbázis vizsgálata: gyereke reláció: négy sor Apagyilkos reláció: 1 állítás: Oidipusz Poluneikeszről nem tudjuk, hogy Apagyilkos-e, ezért Apagyilkos(POLUNEIKESZ) hamis válasz: igen, Poluneikész

Nyíltvilág és zárt világ szemantika - Példa gyereke(IOKASZTE, OIDIPUSZ) gyereke(OIDIPUSZ, POLUNEIKESZ) gyereke(IOKASZTE, POLUNEIKESZ) gyereke(POLUNEIKESZ, THERSZANDROSZ) Apagyilkos(OIDIPUSZ) ¬Apagyilkos(THERSZANDROSZ) nyíltvilág szemantikában: Apagyilkos(POLUNEIKESZ) nem definiált -> lehet igaz is esetszétválasztás

Nyíltvilág és zárt világ szemantika - Példa gyereke(IOKASZTE, OIDIPUSZ) gyereke(OIDIPUSZ, POLUNEIKESZ) gyereke(IOKASZTE, POLUNEIKESZ) gyereke(POLUNEIKESZ, THERSZANDROSZ) Apagyilkos(OIDIPUSZ) ¬Apagyilkos(THERSZANDROSZ) esetszétválasztás: abban az interpretációban 1. amelyben Poluneikesz apagyilkos a feltett kérdésre a válasz igen, mivel Iokasztének van apagyilkos gyereke (Poluneikesz) akinek van nem apagyilkos gyereke (Therszandrosz)

Nyíltvilág és zárt világ szemantika - Példa gyereke(IOKASZTE, OIDIPUSZ) gyereke(OIDIPUSZ, POLUNEIKESZ) gyereke(IOKASZTE, POLUNEIKESZ) gyereke(POLUNEIKESZ, THERSZANDROSZ) Apagyilkos(OIDIPUSZ) ¬Apagyilkos(THERSZANDROSZ) esetszétválasztás: abban az interpretációban 2. amelyben Poluneikesz nem apagyilkos a feltett kérdésre a válasz igen, mivel Iokasztének van apagyilkos gyereke (Oidipusz) akinek van nem apagyilkos gyereke (Polüneikész)

Nyíltvilág és zárt világ szemantika - Példa gyereke(IOKASZTE, OIDIPUSZ) gyereke(OIDIPUSZ, POLUNEIKESZ) gyereke(IOKASZTE, POLUNEIKESZ) gyereke(POLUNEIKESZ, THERSZANDROSZ) Apagyilkos(OIDIPUSZ) ¬Apagyilkos(THERSZANDROSZ) az ABox minden modelljében a válasz igen, anélkül, hogy Polüneikészről megfogalmaznánk az apagyilkos/nem apagyilkos állítást

A leíró logika, a klasszikus logika és az objektum alapú ismeretábrázolás lsd könyv

Alkalmazások Az alábbi területeken sikerrel alkalmazták: fogalmi modellezés információ integrálás tervező és konfiguráló rendszerek természetes nyelvek megértése

Alkalmazások KL-ONE(1977): első leíró logikán alapuló ismeretábrázolás KRYPTON(1983), KANDOR(1984),MESON(1988) ma is készülnek alkalmazások CLASSIC, LOOM, BACK nyelveken fontos alkalmazási terület: OWL ontológianyelvek (OWL Full, OWL DL, OWL Lite) következtetőrendszereinek használata OWL DL: SHOIN(D) OWL Lite: SHIF(D) feleltethetők meg