Az atomok periódusos rendszere Mengyelejev (1871): az elemeket relatív atomtömegük növekvő sorrendjében felírva egy táblázatot készített, amelyben egymás alatt a hasonló fizikai és kémiai tulajdonságú elemek kerültek → periódusos rendszer
Az atomok elektronhéjának felépítése Atompályák alakja: s pályák gömbszimmetrikusak (maximum 2 elektron) p pályák egy csomósíkkal rendelkeznek (maximum 6 elektron) d pályák két csomósíkkal rendelkeznek (maximum 10 elektron) Az elektronhéj elektronjainak megadása: n s x p y … ahol x és y az azonos energiájú elektronok száma
Az atomok elektronhéjának felépítése
Külső elektronhéj elektronszerkezete dönti el a kémiai kötések számát és módját → vegyértékhéj Nemesgáz-konfiguráció: ns 2 ill. ns 2 p 6 a legstabilabb elektronszerkezet, melynek elérése után új héj kezd feltöltődni, tehát az elektronhéjak kiépülése periodikus. Figyelem! n = 3-tól a d pályák, n = 4-től az f pályák E értékei magasabbak az utánuk következő s ill. p-pályákénál
Az elemek fizikai tulajdonságai Az elemek legtöbb fizikai sajátsága periodikusan változik, pl. a sűrűség, mely az egyes periódusok közepe táján maximális értéket vesz fel, egy oszlopon belül pedig általában felülről lefelé nő. Az elemek sűrűsége szilárd halmazállapotban a rácstípus, a relatív atomtömeg és az atomméret függvénye és tág határozok között változik.
Az elemek fizikai tulajdonságai Az elemek olvadáspontja és forráspontja a rácstípuson kívül annak a kötésnek az erősségétől függ, amely a rácspontokban elhelyezkedő részecskéket tartja össze. Rácstípusok: atomrács, ionrács, molekularács, fémrács Az atomrácsot alkotó elemek esetén az összetartó erők tulajdonképpen vegyértékerők, így olvadáskor kémiai bomlás játszódik le, melyhez nagyobb energia szükséges. Magas hőmérsékleten olvadnak és forrnak, illetve szublimálnak. Atomrács: rácspontokban atomok, közöttük kovalens kötés Ionrácsos elem – értelemszerűen – nincs.
Az elemek fizikai tulajdonságai A molekularácsokat gyenge van der Waals erők tartják össze, ezért az ilyen elemek olvadás- és forráspontja alacsony. Molekularács: rácspontokban molekulák, közöttük van der Waals kötés A fémrácsos elemek a szoros illeszkedés és a delokalizált elektronfelhő kialakulása miatt általában szilárdak és magas olvadáspontúak. A rácspontok elmozdítása a rács összeomlásával, ezért a fémek alakíthatók. A delokalizált elektronfelhő miatt a fémek „fém”-fényűek, és vezetik az elektromos áramot. Fémrács: rácspontokban fémionok, közöttük elektrongáz
Az elemek kémiai tulajdonságai Oxigénnel a halogének és a nemesgázok kivételével valamennyi elem reagál a megfelelő körülmények között, miközben oxidok keletkeznek. Vízzel az elemek egy része nem reagál. A fluor a vízből oxigént szabadít fel, és a többi halogén is képes erre, de lényegesen lassúbb két lépéses reakcióban. A hidrogénnél pozitívabb jellemű elemek a vízből hidrogént szabadítanak fel. Savakkal a hidrogénnél pozitívabb fémek hidrogénfejlődés közben reagálnak. Oxidáló hatású savak a hidrogénnél kevésbé pozitív fémekkel is. A nemfémekkel csak erősen oxidáló hatású savak reagálnak.
Az elemek kémiai tulajdonságai Lúgoldatokkal a hidrogénnél pozitívabb fémek hidrogénfejlődés közben reagálnak, de a reakció csak az alkálifémek és a bárium (Ba) esetében játszódik le teljesen, mivel ezeknek a fémeknek a hidroxidjai oldhatók vízben. A többi fém felületén összefüggő hidroxidréteg keletkezik, mely a reakciót a továbbiakban meggátolja. Néhány fém hidroxidja lúgokban komplex képződés közben oldódik /ún. amfoter hidroxidok, pl. Al(OH) 3 /, így ezek a fémek hideg vízből nem, de lúg oldatokból hidrogént képesek fejleszteni. Számos nemfémes elem is reagál lúgokkal.
A nemfémes elemek általános tulajdonságai A nemfémes elemek a periódusos rendszer főcsoportjaiban a III-VIII. oszlopban találhatók. A harmadik oszlopból csak a bór (B),a negyedikből pedig a szén (C), szilicium (Si) és a germánium (Ge) nem fém. Külső héjuk elektronkonfigurációja: ns 2 np x (x = 1, 2, 3, 4, 5, 6). A nemfémek elektronleadással csak kivételesen tudnak ionná alakulni. A VI. és VII. oszlop nemfémes elemei 1, illetve 2 elektron felvételével anionokká alakulnak. A nemfémek tipikus ionvegyületeket alkotnak az I. és II. oszlop fémeivel. Egymással kovalens kötéseket létesítenek. Leggyakrabban molekularácsos (pl. SO 2, NO) ritkábban atomrácsos vegyületeket hoznak létre (pl. SiC, BN stb.).
A nemfémes elemek általános tulajdonságai Gázállapotban a nemesgázok kivételével többatomos molekulákat alkotnak, melyek magas hőmérsékleten atomjaikra disszociálnak. Sűrűségük általában nem túl nagy és az egyes csoportokban atomtömeg növekedésével nő. Hasonló szabályszerűséget mutat általában az olvadáspont és a forráspont menete is, színük a relatív atomtömeg növekedésével fokozatosan mélyül.
A fémes elemek általános tulajdonságai A periódusos rendszer elemeinek mintegy háromnegyed része fém. Külső héjuk általános elektronkonfigurációja: ns 2 np x (x = 1, 2). Az átmeneti fémek külső héján egységesen ns 2, az n-1 d pálya töltődik
A fémes elemek általános tulajdonságai Az egyes fémek fizikai tulajdonságai között általában jóval kisebb a különbség, mint az egyes nemfémek között. Ez, részben a fémes kötésre jellemző delokalizált elektronfelhővel magyarázható. A fémek sűrűsége széles határok között változik, a legkisebb az Alkálifémeké (0,6-1,9), a legnagyobb az ozmiumé (22,5) és az iridiumé (22,4). A fémeket sűrűségük szerint két nagy csoportra osztjuk: az 5 g/cm 3 -nél kisebb sűrűségű fémeket könnyű-, az annál nagyobb sűrűségűeket pedig nehézfémeknek nevezzük. Toxikus könnyűfém pl. Ba (3,5), nem toxikus nehézfém Fe (7,9)! A fémek szobahőmérsékleten a higany kivételével szilárd halmazállapotúak Képlékenyek, alakíthatók és nagy a szakítószilárdságuk, tehát anélkül nyújthatók, hogy rácsszerkezetük összetörne. Minél tisztább egy fém, annál inkább alakítható. A fémek vezetik az elektromos áramot. A tiszta fémek jobban. Legjobban vezetnek: arany, ezüst, réz, de az alumíniumot is használják.
A félfémek általános tulajdonságai Fémes és nemfémes tulajdonságú kristályokat is alkothatnak. Kémiai jellemzőik a fémek és a nemfémek között helyezkednek el. Például, oxidjaik gyakran amfoterek. Elektromos tulajdonságaik a félvezetőtől (B, Si, Ge) a kvázi-fémekig (például Sb) változnak.
Az elemek gyakorisága a földkéregben
Növényi tápelemek fajonként, fajtánként, részenként különböző a koncentrációban: N, K2,0 - 6,0 % Ca, P, S0,3 - 1,5 % Mg, Na0,2 - 0,6 % Fe, Mn ppm Zn ppm Cu ppm B (egyszikű) 10 ppm B (kétszikű)20 – 100 ppm Mo 1 ppm ppm milliomod rész mg/kgg/t ppm 0,002-0,02 % Földkéregben: N: 0,03% K: 2,6% Ca: 3,6% P: 0,1% S: 0,05% Mg: 2% Na: 2% Fe: 5% Mn: 0,1% Zn: 0,01% Cu: 0,01% B: 0,002% Mo: 0,001% O: 47% Si: 28% Al: 9%H: 0,14% C: 0,032% Cl: 0,02% Toxikus elemek:Radioaktív elemek: Pb: 0,002% Cd Hg AsU Sr Co J 40 K (0,012%) (20 ppm)
Urangehalt der deutschen Böden: Urangehalt (mg U kg -1 ) der deutschen Ober- (links) und Unterböden (rechts), dargestellt nach DeKok und Schnug (2008)
01:19 Kémiai kötések Elsődleges kémiai kötések: energiaszegényebb állapot elérése a cél. Elektronegativitás : megadja, hogy egy atom a többihez képest milyen mértékben képes az elektronfelhőt maga köré sűríteni (0,6 – 4,00). Ionos kötés: ionok között elektrosztatikus vonzás Kovalens kötés: közös elektronpár révén megvalósuló elsőrendű kötés kolligációval: ha mindkét atom (egy-egy ellentétes spínű) elektronjából jön létre a kötés. H. +H. H - H datív módon: ha a kötést létesítő egyik atomtól (donor) származik mindkét elektron (a másik atom az akceptor). H: +H+ H - H A kötés és a molekula lehet poláros vagy apoláros:
Kétatomos molekulapályák σ – pálya: töltésfelhő eloszlása hengerszimmetrikus kapcsolódó atomok szabad rotációja biztosított erős kötés π – pálya: töltésfelhő eloszlása merőleges a kötéstengelyre kapcsolódó atomok szabad rotációja nem biztosított gyenge kötés
Lokalizálható molekulaszintek Atompályák kapcsolódásánál a vegyértékhéj pályái a másik atom polarizáló hatása miatt alakváltozást (hibridizációt) szenvednek. Az s, p és d–pályák 5 legfontosabb hibridtípusa:
Kémiai kötések folytatás Fémes kötés: fémkationok és közöttük könnyen mozgó elektrongáz, policentrikus, n részecske esetén n-szeres felhasadás (sávok). Az elektronok szabadon elmozdulhatnak és nem lehet megállapítani, hogy melyik fémionhoz tartoznak. A vegyértékelektronok tehát a fémes kötés esetén az összes ion között vannak megosztva. Másodlagos kötések: Van der Waals - kötés: orientációs effektus (dipólusok kölcsönhatása) indukciós effektus (indukált dipólus kölcsönhatás) diszperziós effektus (nem dipólusok kölcsönhatása) Hidrogén – kötés: H és nagy elektronegativitású atom (O, N, F) közötti elektrosztatikus vonzás
Halmazok, homogén és heterogén rendszerek Szilárd halmazállapot jellemzői: amorf vagy kristályos szerkezet
Halmazok, homogén és heterogén rendszerek Atomrács: rácspontokban atomok, közöttük kovalens kötés pl.: SiO 2 (α-kvarc) Ionrács: rácspontokban ionok, közöttük elektrosztatikus vonzás pl.: NaCl (konyhasó) Molekularács: rácspontokban molekulák, közöttük másodlagos kötés pl.: H 2 O (jég) Fémrács: rácspontokban fémionok, közöttük elektrongáz pl.: bronz
A vegyületek általános tulajdonságai Két atom között létrejövő kötés jellegét az atomok elektronegativitásának összege és különbsége határozza meg. Különb- ség/ Összeg 0,50,5 – 1,01,0 – 1,52,0 5-8kovalens apoláros kovalens gyengén poláros kovalens erősen poláros ionos 3-5kovalens – fémes átmeneti kovalens gyengén poláros kovalens erősen poláros ionos 2-3 fémeskovalens vagy fémes kovalens erősen poláros -
Különbség/Összeg0,50,5 – 1,01,0 – 1,52,0 5-8kovalens apoláros kovalens gyengén poláros kovalens erősen poláros ionos 3-5kovalens – fémes átmeneti kovalens gyengén poláros kovalens erősen poláros ionos 2-3fémeskovalens vagy fémes kovalens erősen poláros - Kötés jelleg - elektronegativitás
A vegyületek oldhatósága függ a szilárd anyag molekulái, ionjai közötti kötés erősségétől A vegyületek oldhatósága függ az oldatba kerülő molekulák illetve ionok és az oldószer molekulái illetve ionjai közötti kötés erősségétől A fémoxidok maguk sohasem oldódnak vízben, csak ha hidroxidokká alakulnak. A hidroxidok közül csak az alkálifémek hidroxidjai és a báriumhidroxid oldódnak jól, kevéssé oldódik még a stroncium (Sr) és a kalcium (Ca), forró vízben pedig a magnézium (Mg) hidroxidja.
Fe(OH) 3 Fe(OH) 2 L = [Fe 3+ ].[OH - ] 3 = 1,7* [Fe 3+ ] = 1,7* / [OH - ] 3 [OH - ] = /[H + ] L = [Fe 2+ ].[OH - ] 2 = 4,9* [Fe 2+ ] = 4,9* / [OH - ] 2 Fémhidroxidok oldhatósága lg[Fe 3+ ] = -38,77-3*lg[OH - ] = 3,23 – 3*(-lg [H + ]) lg[OH - ] = -14-lg[H + ] lg[Fe 2+ ] = -16,31-2*lg[OH - ] = 25,69 – 2*(-lg [H + ])
Fémhidroxidok oldhatósága Komplexképződés befolyása
Foszfor a talajban Összes P 0,02-0,1% (nagyrészt erősen kötött) 50% szerves – 50% szervetlen Szervetlen foszfátok –Eredeti ásvány: »Ca 5 (PO 4 ) 3 Ffluorapatit »Ca 5 (PO 4 ) 3 OHhidroxiapatit –Átalakulási termékek: Ca 3 (PO 4 ) 2, CaHPO 4, Ca(H 2 PO 4 ) 2 Ca foszfátok AlPO 4.2H 2 Ovariszcit FePO 4 strengtit
Foszfátok pH függő oldhatósága AlPO 4.2H 2 O (variszcit) L=9,84E -21 FePO 4 (strengtit) L=1,30E -22 9,84E- 21
Ca 3 (PO 4 ) 2 2,07E-33 CaHPO 4 1,00E-07 Oldhatósági szorzat
Vas, mangán és néhány kis mennyiségben előforduló fém Vas: A foszfor hozzáférhetőségét befolyásolja Fe 2+ - vízben oldódik (FeS nem), míg az Fe 3+ nem. Oxidatív, pH 7,5-7,7 környezetben Fe 3+ - (Fe(OH) 3 ) kicsapódik, a foszfor adszorbeálódik a vashidroxid felületén és kiülepszik (koprecipitáció). A toxikus nehézfémek is kicsapódnak a vas precipitátumokkal (csapadékokkal). Gyöngyösoroszi bányavíz tisztítás!
Komplex szennyezők kicsapatása Lúgos bontás – hidroxo komplex Komplexképződési egyensúly – szabad komplexképző eltávolítása (másik fázis, oxidáció) – erősebb csapadékképző komplex Trimercapto-s-triazin tmt 15 ® szennyvizekben oldott, komplex kötésű, egy- és kétértékű nehézfémek (pl. ólom, kadmium, réz, nikkel, higany, ezüst) kicsa- patására, mivel ezeket komplex- képző anyagok jelenlétében nem lehet hidroxidok formájában kicsapni.
A kémiai gyakorlatban gyakran előforduló sók vízben való oldhatósága: a nitrátok mind oldhatók(NO 3 - ) a klorátok mind oldhatók(Cl0 3 - ) a perklorátok mind oldhatók(Cl0 4 - ), kivéve a kálium-perklorátot (KCl0 4 ) fluoridok oldhatók, kivéve a Ca 2+, Sr 2+ és Ba 2+ és Al 3+ fluoridjait (F - ), a kloridok (Cl - ) és bromidok (Br - ), jodidok (I - ) általában oldhatók
A kémiai gyakorlatban gyakran előforduló sók vízben való oldhatósága: a karbonátok és a foszfátok általában oldhatatlanok, kivéve az alkálifémek és az ammónium karbonátjait és foszfátjait (CO 3 2-,PO 4 3- ). Több fém (pl. Ca 2+, Ba 2+, Mg 2+ és Pb 2+ ) hidrogénkarbonátja vízoldható (HCO 3 - ), a szulfidok közül csak az alkáli- és alkáliföldfémek szulfidjai oldódnak (S 2- ). a szulfátok közül nem oldható a Ba 2+, Sr 2+ és Pb 2+ szulfátjai (SO 4 2- ), és rosszul oldódik az Ag + és Hg 2+ szulfát a szulfit és tioszulfát ionoknak csak az alkálifémekkel alkotott sói oldhatók (SO 3 2-, S 2 O 3 2- ).
Vízkeménység Vízkő-kiválás. Okozzák: kalcium és magnézium sók. Változó keménység: Ca(HCO 3 ) 2, Mg(HCO 3 ) 2 Forralás CO 2 vesztés karbonát kiválás Állandó keménység: Oldható Ca, Mg sók (CaCl 2 ) Csapadékképződés (pl.: Ca-szappan) Mértéke: német keménységi fok A definíció szerint: 1 nk° = 10 mg CaO / lit.
Vízlágyítás Régi kémiai módszerek (általában ipari): meszes lágvítás Ca(HCO 3 ) 2 + Ca(OH) 2 = 2 CaCO H 2 O Csak a változó keménységet távolítja el. Ez a karbonát mentesítés. Egyben részleges sótalanítás is, mert csökken az összes só tartalom is. Alkalmazása: magas változó keménység (szikes vizek) esetén indokolt. Nem 100 %-os, de ma is alkalmazott módszer -> előlágyításra - a mész olcsó. Szódás eljárás: ha magas az állandó keménység, változó alig van, (ritka eset): CaCI 2 + Na 2 CO 3 = CaCO NaCI A fenti két módszer kombinációja a mész-szódás eljárás A vegyszer feleslegek végül egymással is reagálnak: Ca(OH) 2 + Na 2 CO 3 = CaCO NaOH Trisós eljárás: Na 3 PO 4 reagál az állandó és változó keménységet okozó kalcium- és magnézium sókkal -> oldhatatlan csapadék (Ca 3 (PO 4 ) 2, Mg 3 (PO 4 ) 2 ) költségesebb. Iszap-szerű csapadék - nem képez nehezen eltávolítható lerakódást.
Ioncserélő műgyanták aktív csoportokkal rendelkező polimer polimer műgyanta, gyöngypolimerpolimerműgyanta Szilárd szemcsés ioncserélő anyagok szilárd sónak, savnak, bázisnak tekinthetők. Az ioncserélő műgyanták térhálós szerkezetű szerves molekulavázból állnak, amelyen disszociációra képes aktív csoportok foglalnak helyet. az aktív csoportok kicserélhetők –protonra (H + ), Na + -ra>>> KATIONCSERÉLŐ –hidroxil ionra (OH - ), Cl - -re>>> ANIONCSERÉLŐ Deszt víz: H +, OH -, Lágy víz: Na + Cl - Gyártmányok –Amberlite IR, Levatit, Permutit, Dowex, Varion, Mikion
Ioncserélő műgyanták Az aktív csoport jellege szerint lehet Gyengén savas, pl.: -COO - Erősen savas kationcserélő gyanta, pl.: -SO 3 − Gyengén bázisos, pl.: -NH 3 + Erősen bázisos anioncserélő gyanta, pl.: -NR 3 +
Ioncserélő műgyanták Az erősen savas ioncserélők (-SO 3 − ) általában nem szelektívek.Kötéserősség-sorrend: H + < Na + < NH 4 + < K + < Mg 2+ < Ca 2+ < Al 3+ A kötéserősség az ionok töltésszámának növekedésével nő. A gyengén savas ioncserélők (-COO - ) kötési sorrendje: K + < Na + < Mg 2+ < Ca 2+ < H + Az erősen bázisos ioncserélők (-NR 3 + ) kötési sorrendje: OH - < HCO 3 − < Cl - < CO 3 2− < SiO 3 2− < SO 4 2− A gyengén bázisos ioncserélők (-NH 3 + ) kötési sorrendje: HCO 3 − < CO 3 2− < SiO 3 2− < Cl - < SO 4 2− < OH -
Ioncserélő készülékek I. Külön ágyas berendezések a kationcserélő és az anioncserélő műgyanta külön oszlopban van elhelyezve először a kationokat, majd az anionokat cseréljük ki regenerálás: kationcserélő >>>HCl anioncserélő >NaOH
Külön ágyas berendezés sematikus rajza csapvíz Anion- cserélő oszlop Kation- cserélő oszlop ioncserélt víz SS Működtetés: duzzasztás regenerálás víztermelés
Ioncserélő készülékek II. Kevert ágyas berendezések a kationcserélő és az anioncserélő műgyanta egy oszlopban van elhelyezve egyszerre cseréli a kationokat és az anionokat regenerálás: a gyártó regenerálja (szeparálás, külön regenerálás) Jellemzően a külön ágyas berendezés után csatlakoztatva ionmentes víz előállítás
Kevert ágyas berendezés sematikus rajza csapvíz Kevert ioncserélő oszlop ioncserélt víz SS Vízlágyítás esetén regenerálás: tömény NaCl oldat Működtetés: duzzasztás regenerálás víztermelés
Intézeti ioncserélő készülék