Kétismeretlenes elsőfokú (lineáris) egyenletrendszerek

Slides:



Advertisements
Hasonló előadás
Lineáris egyenletrendszerek
Advertisements

Készítette: Nagy Mihály tanár Perecsen, 2006.
Lineáris egyenletrendszerek megoldása Gauss elimináció, Cramer-szabály Dr. Kovács Sándor DE GVK Gazdaságelemzési és Statiszikai Tanszék.
Egyismeretlenes lineáris egyenletek
Irracionális egyenletek
Műveletek logaritmussal
Kalman-féle rendszer definíció
Elemi bázistranszformáció
Globális helymeghatározás Zárthelyi dolgozat Relatív helymeghatározás fázisméréssel.
Operációkutatás szeptember 18 –október 2.
Függvénytranszformációk
Algebra a matematika egy ága
Mindenki az egyenes illesztést erőlteti. Kell olyan ábra ahol 1 ismeretlen pont van Kell olyan ábra ami a görbék párhuzamos lefutását mutatja Kell olyan.
Transzformációk kucg.korea.ac.kr.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VIII.. Dr. Szalka Éva, Ph.D.2 Többváltozós korreláció és regresszióanalízis.
Másodfokú egyenletek.
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok
Operációkutatás Kalmár János, Hiperbolikus és kvadratikus programozás.
A TERMÉSZETTUDOMÁNYOK ALAPJAI 1. Matematika
Lineáris algebra Mátrixok, determinánsok, lineáris egyenletrendszerek
Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.
Integrálszámítás Mire fogjuk használni az integrálszámítást a matematikában, hova szeretnénk eljutni? Hol használható és mire az integrálszámítás? (már.
Edényrendezés - RADIX „vissza” - bináris számokra
Másodfokú egyenletek Készítette: Orémusz Angelika.
Lineáris egyenletrendszerek megoldása
Rendszerező összefoglalás matematikából
MATEMATIKA ÉS INFORMATIKA I.
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém /' /
dr. Szalkai István Pannon Egyetem, Veszprém
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém 2007.
Lineáris algebra.
Exponenciális egyenletek
Koordináta-geometria
A logaritmusfüggvény.
Másodfokú egyenletek megoldása
Kört érintő egyenesének egyenlete
Lineáris függvények ábrázolása
1. feladat Makó és Veszprém között a távolság 270 km. Reggel 8-kor elindult egy vonat Makóról 60 km/h sebességgel. 9-kor Veszprémből indult egy gyorsvonat.
Felszín alatti vizek védelme Vízmozgás analitikus megoldásai.
Közös metszéspontú erők
GNSS elmélete és felhasználása A helymeghatározás matematikai modelljei: fázismérésen alapuló relatív helymeghatározás különbségképzéssel.
Az típusú egyenletekről, avagy az írástudók felelőssége és egyéb érdekességek Ábrahám Gábor.
Lineáris egyenletrendszerek, leképezések, mátrixok
Katz Sándor: Módszertani szempontból fontos feladatok
2.2. Az egyenes és a sík egyenlete
Lineáris algebra.
Elektronikus tananyag
A határérték Digitális tananyag.
Dr. Bánkuti Gyöngyi Klingné Takács Anna
Műveletek, függvények és tulajdonságaik Mátrix struktúrák:
A mozgás egy E irányú egyenletesen gyorsuló mozgás és a B-re merőleges síkban lezajló ciklois mozgás szuperpoziciója. Ennek igazolására először a nagyobb.
Valószínűségszámítás II.
Többdimenziós valószínűségi eloszlások
Hibaszámítás Gräff József 2014 MechatrSzim.
Adalékok egy véges összegzési feladathoz
Egyenletek középszinten, emelt szinten, versenyszinten Katz Sándor, Bonyhádi Petőfi S. Ev. Gimn.
Témazáró előkészítése
Egyenlet, egyenlőtlenség, azonosság, azonos egyenlőtlenség
Készítette: Horváth Zoltán
Integrálszámítás.
Lineáris egyenletrendszerek megoldása Gauss elimináció, Cramer-szabály Dr. Kovács Sándor DE GVK Gazdaságelemzési és Statiszikai Tanszék.
Lineáris egyenletrendszerek
III. előadás.
5. Kalibráció, függvényillesztés
Matematika 10.évf. 4.alkalom
Matematika 11.évf. 1-2.alkalom
A lineáris függvény NULLAHELYE
Szögfüggvények és alkalmazásai Készítette: Hosszú Ildikó Nincs Készen.
Előadás másolata:

Kétismeretlenes elsőfokú (lineáris) egyenletrendszerek Megoldási módszerek és kidolgozott feladatok

Megoldási módszerek Grafikus módszer Behelyettesítéses módszer Egyenlő együtthatók módszere

Grafikus módszer Szükséges lépések, hogy az egyenletek y-ra legyenek rendezve, az egyenleteket mint függvényeket közös koordináta rendszerben ábrázoljuk, és a kapott metszéspont tengelyekre vetített képét leolvassuk. Ezek adják a megoldást.

x=1; y=2 és ez az egyenletrendszer megoldása Példa x=1; y=2 és ez az egyenletrendszer megoldása

X=0; y=2 És ez az egyenletrendszer megoldása Példa X=0; y=2 És ez az egyenletrendszer megoldása

Megoldás: x=3; y=-1 Olvassuk le a metszéspont jelzőszámait! I. II. Mivel mind a két egyenlet y-ra rendezett, ezért ábrázolhatjuk ezeket közös koordinátarendszerben I. II. Olvassuk le a metszéspont jelzőszámait! x 1 5 10 -5 -10 y I. Megoldás: x=3; y=-1 II.

Megoldás: x=2; y=2 Olvassuk le a metszéspont jelzőszámait! y=2 X=2 Mivel mind a két egyenlet y-ra rendezett, ezért ábrázolhatjuk ezeket közös koordinátarendszerben I. II. Olvassuk le a metszéspont jelzőszámait! 5 -5 x y I. Megoldás: x=2; y=2 y=2 X=2 II.

I. Mivel mind a két egyenlet y-ra rendezett, ezért ábrázolhatjuk ezeket közös koordinátarendszerben II. Olvassuk le a metszéspont jelzőszámait! 5 -5 x y Megoldás: Mivel nincs metszéspont, ezért nincs megoldása az egyenletrend-szernek I. II.

Megoldás behelyettesítő módszerrel Valamelyik egyenletet az egyik változójára rendezzük Ezután behelyettesítjük a rendezett egyenletet a másik eredeti egyenletbe. Az így kapott egy ismeretlenes egyenletet megoldjuk. A kiszámított ismeretlent visszahelyettesítjük a másik egyenletbe, majd az így kapott szintén egyismeretlenes egyenletet megoldva kapjuk a másik ismeretlen értékét.

Megoldás behelyettesítő módszerrel (folytatás) A kiszámított ismeretlent visszahelyettesítjük a másik egyenletbe, majd az így kapott szintén egyismeretlenes egyenletet megoldva kapjuk a másik ismeretlen értékét. A kapott megoldásokat ellenőrízzük.

Mely számpárok elégítik ki az egyenletek megoldáshalmazát? Vegyük észre, hogy a II. egyenlet x-re rendezett! I. II. Helyettesítsük be a II. egyenletet az I. egyenletbe! II. I. Zárójelbontás Összevonás / -2 / :7 Helyettesítsük vissza ezt az eredményt a II. egyenlet rendezett alakjába! Az egyenletrendszer megoldása: x=2, és y=1

Példa a behelyettesítő módszerre Vegyük észre, hogy az I. egyenlet könnyen y változóra rendezhető! Elegendő visszahelyettesíteni az előbb kapott eredményt az I. egyenlet rendezett alakjába! És ez a megoldása az egyenletrendszernek

Mi a megoldása a következő egyenletrendszernek? II. Fejezzük ki y-t az I. egyenletből! Helyettesítsük be az I. egyenlet y-ra rendezett alakját a II.-ba! I. II. Behelyettesítéskor ügyeljünk arra, hogy többtagú tényezővel helyettesítünk! / +32 / :7 Helyettesítsük vissza ezt az eredményt az I. egyenlet rendezett alakjába! Az egyenletrendszer megoldása: x=5, és y=6

Mi a megoldása a következő egyenletrendszernek? Fejezzük ki y-t a II. egyenletből! I. II. Helyettesítsük be a II. egyenlet y-ra rendezett alakját az I.-be! II. I. Behelyettesítéskor ügyeljünk arra, hogy többtagú tényezővel helyettesítünk! / Összevonás / :9 Helyettesítsük vissza ezt az eredményt a II. egyenlet rendezett alakjába! Az egyenletrendszer megoldása: x=3, és y=2

Egyenlő együtthatók módszere Akkor hatásos, amikor a behelyettesítés előkészítése bonyolulttá tenné az egyenlet átrendezését. Célunk ezzel a módszerrel az, hogy valamelyik ismeretlen változótól kiküszöböljük. Ezt úgy tehetjük meg, hogy mindkét egyenletnek az egyik kiválasztott változóit ekvivalens átalakítással egyenlő abszolút értékű együtthatóra alakítjuk.

Egyenlő együtthatók módszere (folytatás) Ha az együtthatók azonos előjelűek, akkor kivonjuk, ha ellentétes előjelűek, akkor összeadjuk az egyenleteket. A kapott egyismeretlenes egyenletet megoldva kapjuk az egyik ismeretlent. Bármelyik egyenletbe visszahelyettesítve, az egyenletet megoldva kapjuk a másik ismeretlent. Az eredményeket ellenőrízzük.

Ha az I. egyenletet megszorozzuk 3-mal, és a II Ha az I. egyenletet megszorozzuk 3-mal, és a II. egyenletet megszorozzuk 2-vel, akkor mindkét egyenletben az x változó 6 szorosa jelenik meg. Azaz: Mindkét egyenletben a 6x-es tagok pozitívak. Vonjuk ki az I. egyenletből a II.-at.

Oldjuk meg ugyanezt az egyenletrendszert x-re is!

Mi a megoldása a következő egyenletrendszernek? / *7 I. Ahhoz, hogy x-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 175 lesz a közös együtthatójuk II. / *5 I. Vonjuk ki az első egyenletből a másodikat! II. - I. II. / :20 Helyettesítsük vissza ezt az eredményt a II. egyenlet eredeti alakjába! / -40,3 / :35 Az egyenletrendszer megoldása: x=-0,18, és y=1,3

Mi a megoldása a következő egyenletrendszernek? / *2 I. Ahhoz, hogy x-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 10 lesz a közös együtthatójuk II. I. Vonjuk ki az első egyenletből a másodikat! II. - I. II. / :9 Helyettesítsük vissza ezt az eredményt a II. egyenlet eredeti alakjába! / -18 / :10 Az egyenletrendszer megoldása: x=5, és y=6

Mi a megoldása a következő egyenletrendszernek? / :2 I. Ahhoz, hogy x-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 2 lesz a közös együtthatójuk II. / *1 I. Vonjuk ki a második egyenletből az elsőt! II. - II. I. / :2 Helyettesítsük vissza ezt az eredményt az I. egyenlet eredeti alakjába! / -18 / :4 Az egyenletrendszer megoldása: x=5, és y=3

Mi a megoldása a következő egyenletrendszernek? / :2 I. Ahhoz, hogy x-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 2 lesz a közös együtthatójuk II. / *1 I. Vonjuk ki a második egyenletből az elsőt! II. - II. I. Azaz bármelyik x-hez találunk pontosan egy y megoldást Az egyenletrendszernek végtelen sok megoldása van.

Mi a megoldása a következő egyenletrendszernek? / :2 I. Ahhoz, hogy x-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 2 lesz a közös együtthatójuk II. / :5 I. Vonjuk ki a második egyenletből az elsőt! II. - II. I. Azaz bármelyik x-hez találunk pontosan egy y megoldást Az egyenletrendszernek végtelen sok megoldása van.

Mi a megoldása a következő egyenletrendszernek? / :2 I. Ahhoz, hogy x-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 2 lesz a közös együtthatójuk II. / *1 I. Vonjuk ki a második egyenletből az elsőt! II. - II. I. Azaz nincs megoldása az egyenletrendszernek

Mi a megoldása a következő egyenletrendszernek? / *2 I. Ahhoz, hogy y-t ki ejthessük az egyenletrendszerből, vegyük észre, hogy 2 lesz a közös együtthatójuk II. I. Adjuk össze az első és a másodikat egyenleteket! II. I. + II. / :11 Helyettesítsük vissza ezt az eredményt a II. egyenlet eredeti alakjába! / -14 / : (-2) Az egyenletrendszer megoldása: x=2, és y=6