4. előadás.

Slides:



Advertisements
Hasonló előadás
2. előadás.
Advertisements

I. előadás.
Petrovics Petra Doktorandusz
Nemzetközi gazdaságstatisztika
Gazdaságelemzési és Statisztikai Tanszék
Adattípusok, adatsorok jellegadó értékei
Főkomponensanalízis Többváltozós elemzések esetében gyakran jelent problémát a vizsgált változók korreláltsága. A főkomponenselemzés segítségével a változók.
Mérési pontosság (hőmérő)
Gazdaságelemzési és Statisztikai Tanszék
Gazdaságelemzési és Statisztikai Tanszék
Microsoft Excel 2010 Gyakoriság.
Közlekedésstatisztika
Adatfeldolgozás.
5. előadás.
3. előadás.
3. előadás.
A középérték mérőszámai
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Matematikai alapok és valószínűségszámítás
Matematikai alapok és valószínűségszámítás
Matematikai alapok és valószínűségszámítás
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
3. előadás Heterogén sokaságok Szórásnégyzet-felbontás
Statisztika.
Kvantitatív módszerek
Mennyiségi sorelemzés
Leíró statisztika III..
Valószínűségszámítás
Gazdaságstatisztika 11. előadás.
Gazdaságstatisztika LEÍRÓ STATISZTIKA II. 3. előadás
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Többváltozós adatelemzés
Adatleírás.
Dr Gunther Tibor PhD II/2.
I. előadás.
6. előadás.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Viszonyszámok A viszonyszám két egymással logikai kapcsolatban álló statisztikai adat hányadosa V= A/B V: a viszonyszám A:a viszonyítás alapját képező.
Statisztika 12.A és 13.N. A statisztika fogalma A statisztika tömegesen előforduló jelenségek egyedeire vonatkozó információk, adatok gyűjtése, feldolgozása,
Osztóértékek, eloszlások
Középértékek – helyzeti középértékek
x1 xi 10.Szemnagyság: A szemnagyság megadásának nehézségei
Átlag, medián.
 A matematikai statisztika a természet és társadalom tömeges jelenségeit tanulmányozza.  Azokat a jelenségeket, amelyek egyszerre nagyszámú azonos tipusú.
A gyakorisági sorok grafikus ábrázolása
4. előadás.
A számítógépes elemzés alapjai
Konzultáció – Leíró statisztika október 22. Gazdaságstatisztika.
2. előadás Gyakorisági sorok
A számítógépes elemzés alapjai
Leíró statisztika gyakorló feladatok október 15.
MINTAVÉTEL, LEÍRÓ STATISZTIKA
Kvantitatív módszerek
Szóródási mérőszámok, alakmutatók, helyzetmutatók
Eloszlásjellemzők I.: Középértékek
I. Előadás bgk. uni-obuda
Statisztikai alapfogalmak Eloszlásjellemzők
2. előadás Gyakorisági sorok, Grafikus ábrázolás
Adatfeldolgozási ismeretek műszeres analitikus technikusok számára
Adatsorok típusai, jellegadó értékei
5. előadás.
A leíró statisztikák alapelemei
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
Adatfeldolgozási ismeretek környezetvédelmi-mérés technikusok számára
Rangsoroláson és pontozáson alapuló komplex mutatók
Területi egyenlőtlenségek grafikus ábrázolása: Lorenz-görbe
4. előadás.
Mérési skálák, adatsorok típusai
Előadás másolata:

4. előadás

Mennyiségi csoportosító sorok fajtái Egy társasház vízfogyasztására vonatkozó adatok Vízfogyasz-tás (m3) Lakások száma f’ g(%) g’(%) s(m3) z(%) – 15 5 10 50 3 15 – 25 17 22 34 44 340 24 25 – 35 15 37 30 74 450 32 35 – 45 8 45 16 90 320 23 45 – 100 250 18 Összesen - 1410

Helyzeti középértékek Medián A rangsorba rendezett adatok közül a középső elem (az előforduló értékek fele kisebb a medián-nál, fele pedig nagyobb)

Medián me = a mediánt tartalmazó osztályköz alsó határa, vagy az azt megelőző osztályköz felső határa f'me-1 = a mediánt tartalmazó osztályközt megelőző osztályköz kumulált gyakorisága, (a mediánt tartalmazó osztályköz előtti elemek száma); fme = a mediánt tartalmazó osztályközhöz tartozó gyakoriság, azaz a mediánt tartalmazó osztályközben összesen hány elem található; h = a mediánt tartalmazó osztályköz hossza; n = az elemek száma;

Egy társasház vízfogyasztására vonatkozó adatok Vízfogyasztás (m3) Lakások száma f’ – 15 5 15 – 25 17 22 25 – 35 15 37 35 – 45 8 45 45 – 50 Összesen -

Medián előnyös tulajdonságai egyértelműen meghatározható, nem csak mennyiségi jellemzők esetén határozható meg, hanem rangsorba rendezhető minőségi ismérvek esetén is, értéke független a szélső értékektől.

Medián hátrányos tulajdonságai Csak rangsorba rendezett elemekből számítható. Induktív statisztikai célra nem igazán alkalmas. Ha az egyedek jelentős hányada azonos ismérvértékkel rendelkezik, akkor nem célszerű használni.

Módusz (Mo) Diszkrét ismérv esetén: A leggyakrabban előforduló elem Folytonos ismérv esetén: A gyakorisági görbe maximuma.

Módusz mo = a móduszt tartalmazó, un. modális osztályköz alsó határa, k1 = a modális osztályköz és az azt megelőző osztályköz gyakoriságának különbsége, k2 = a modális osztályköz és az azt követő osztályköz gyakoriságának különbsége h = a modális osztályköz hossza.

Egy társasház vízfogyasztására vonatkozó adatok Vízfogyasztás (m3) Lakások száma f’ – 15 5 15 – 25 17 22 25 – 35 15 37 35 – 45 8 45 45 – 50 Összesen -

A módusz jellemzői Előnyös tulajdonságok: Tipikus érték Valamennyi mérési skála esetén alkalmazható. Nem érzékeny a szélső, kiugró értékekre. Hátrányos tulajdonságok: Nem minden esetben létezik, vagy előfordulhat, hogy több is van belőle. Induktív statisztikai célra általában nem alkalmas

Kvantilisek Azok az értékek, melyeknél az összes előforduló értékek j/k-ad része kisebb, illetve az (1-j/k)-ad része nagyobb. (j=1,2,…,k-1) Fontosabb kvantilisek: Medián (Me) k=2 Tercilisek (Tj) k=3 Kvartilisek (Qj) k=4 Kvintilisek (Kj) k=5 Decilisek (Dj) k=10

Egy társasház vízfogyasztására vonatkozó adatok Vízfogyasztás (m3) Lakások száma f’ – 15 5 15 – 25 17 22 25 – 35 15 37 35 – 45 8 45 45 – 50 Összesen -

Köszönöm a figyelmet!