EGYENLETESEN VÁLTOZÓ MOZGÁS

Slides:



Advertisements
Hasonló előadás
Energia, Munka, Teljesítmény Hatásfok
Advertisements

Vigyázz ha jön a vonat! AVAGY MOZGÁSOK.
A gyorsulás fogalma.
Egyenes vonalú egyenletesen változó mozgás
a sebesség mértékegysége
Készítette: Nagy Mihály tanár Perecsen, 2006.
II. Fejezet A testek mozgása
11. évfolyam Rezgések és hullámok
VÁLTOZÓ MOZGÁS.
Egyenletes körmozgás.
Környezeti és Műszaki Áramlástan I.
Az egyenes vonalú egyenletes mozgás
Mozgások I Newton - törvényei
Kvantitatív Módszerek
Testek egyenes vonalú egyenletesen változó mozgása
EGYENLETES MOZGÁS.
I S A A C N E W T O N.
GÁZOS ELŐADÁS.
KINEMATIKAI FELADATOK
A mozgások leírásával foglalkozik a mozgás okának keresése nélkül
Mozgások Emlékeztető Ha a mozgás egyenes vonalú egyenletes, akkor a  F = 0 v = állandó a = 0 A mozgó test megtartja mozgásállapotát,
DINAMIKAI ALAPFOGALMAK
SZABADESÉS.
HŐTAN, más szóval TERMODINAMIKA
A lineáris függvény NULLAHELYE
Matematika III. előadások MINB083, MILB083
Mérnöki Fizika II előadás
Mérnöki Fizika II előadás
Fizika 2. Mozgások Mozgások.
Lineáris függvények.
KINEMATIKAI FELADATOK
Egyenletesen változó mozgás
Egyenes vonalú egyenletesen változó mozgás
Hogyan mozognak a testek? X_vekt Y_vekt Z_vekt Origó: vonatkoztatási test Helyvektor: r_vekt: r_x, r_y, r_z Nagysága: A test távolsága az origótól, 1m,
11. évfolyam Rezgések és hullámok
Az egyenes vonalú egyenletes mozgás
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Két kvantitatív változó kapcsolatának vizsgálata
A függvény deriváltja Digitális tananyag.
FIZIKA.
Összegek, területek, térfogatok
Egyenletesen változó mozgás
Differenciálszámítás
TÉMAZÁRÓ ÖSSZEFOGLALÁS
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg,
Kenyér kihűlése Farkas János
A dinamika alapjai - Összefoglalás
Egyenes vonalú mozgások
2. előadás.
Haladó mozgások Alapfogalmak:
Fizika összefoglaló Egyenes vonalú egyenletesen változó mozgás
A mozgás egy E irányú egyenletesen gyorsuló mozgás és a B-re merőleges síkban lezajló ciklois mozgás szuperpoziciója. Ennek igazolására először a nagyobb.
Egyenes vonalú egyenletesen változó mozgás
A HATÁROZOTT INTEGRÁL FOGALMA
Erőhatás, erő -Az erő fogalma-.
Több erőhatás együttes eredménye
Különféle mozgások dinamikai feltétele
Gyorsulás, lassulás. Fékút, féktávolság, reakció idő alatt megtett út
Munka, energia teljesítmény.
Amikor egy test helye, vagy helyzete egy vonatkoztatási rendszerben megváltozik, akkor ez a test ebben a vonatkoztatási rendszerben mozog. Körmozgás Összetett.
A testek mozgása. 1)Milyen mozgást végez az a jármű, amelyik egyenlő idők alatt egyenlő utakat tesz meg? egyenlő idők alatt egyre nagyobb utakat tesz.
Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség.
Rezgések Műszaki fizika alapjai Dr. Giczi Ferenc
Mechanika Műszaki fizika alapjai Dr. Giczi Ferenc
Készítette: -Pribék Barnabás -Gombi-Nagy Máté
11. évfolyam Rezgések és hullámok
Dinamika alapegyenlete
A lineáris függvény NULLAHELYE
Előadás másolata:

EGYENLETESEN VÁLTOZÓ MOZGÁS AVAGY TRABI CONTRA FERRARI

Melyik gyorsul jobban? Vajon kit mér be a rendőr?

0-100 Az autók, motorok, vonatok repülők, stb egyik jellemző adata a vásárlásoknál a 0-100-as gyorsulás. Ez mit is jelent? Melyiket vesszük meg, ha jobban gyorsuló motorra van szükségünk?

YAMAHA "03TDM900 3. 53sec NISSAN SKYLINE GT-R(R32) 4 YAMAHA "03TDM900 3.53sec NISSAN SKYLINE GT-R(R32) 4.83sec Honda CBR250R(MC19) 5.17sec Honda CBR600RR 3.30sec Suzuki DJEBEL250XC 8.70sec Kawasaki GPZ1000RX 3.37sec Suzuki GSX-R400R 4.27sec Suzuki SV1000SK3 3.37sec Honda ACCORD EURO-R 6.40sec SUBARU LEGACY(B4 3.0R AT) 5.73sec Honda VTR1000F 3.23sec Honda Hornet900 3.50sec YAMAHA "03SEROW225WE 9.40sec TOYOTA "91ARISTO 7.57sec

AKI OKOS.... Szóval, aki okos, mint a tavalyi kos, és a legjobban gyorsuló motort keresi, a felsoroltak közül a Honda VTR1000F gyártmány választja, ami ránézésre se rossz, de a 0-100=3,23 sec, az azt jelenti, hogy az adott motorkerékpár álló helyzetből indulva, a 100 km/h-ás sebességet 3,23 másodperc alatt éri el.

a = állandó, ennek megfelelően:Δv/Δt= állandó MI AZ A GYORSULÁS? A változó mozgások egyik fontos csoportját alkotják azok a mozgások, amelyeknél a pontszerű test pályája egyenes, a gyorsulás állandó nagyságú, és iránya a sebesség irányának egyenesébe esik. Az ilyen mozgásokat egyenes vonalú, egyenletesen változó mozgásoknak nevezzük. Az „egyenletesen változó” jelző arra utal, hogy a sebesség nagysága egyenletesen változik, azaz a sebességváltozás egyenesen arányos az idővel. Ezeknél a mozgásoknál ugyanis a gyorsulás iránya és nagysága is állandó: a = állandó, ennek megfelelően:Δv/Δt= állandó A sebességváltozás az a =Δv/Δt összefüggésből kifejezhető a gyorsulás és az időtartam segítségével: Δv = a · Δt

FOLYTATÁS Ha az egyenes vonalú, egyenletesen változó mozgást az időmérés kezdetétől egy t időpontig vizsgáljuk, akkor Dt = t – 0 = t Ha a test kezdeti sebességét v0 jelöli, a Dt időtartam végén pedig v a sebesség, akkor a sebességváltozás: Dv = v – v0. Ekkor a Dv = a ∙ Dt képletbe behelyettesítve: v – v0 = a ∙ t Ebből a pillanatnyi sebesség: v = v0 + a ∙ t

Még mindig folytatás Ha a sebesség-idő közti összefüggést grafikusan ábrázoljuk, akkor minden esetben egy egyenest kapunk, azaz a sebesség lineáris függvénye az időnek. Az egyenes és a sebességtengely metszéspontja a kezdősebességet határozza meg, az egyenes meredeksége a gyorsulástól függ. Ha a gyorsulás a sebességgel megegyező irányú, akkor a függvény monoton (egyhangúan) növő (1.ábra). Ha a kezdeti sebességgel ellentétes irányú, akkor monoton csökkenő (2.ábra). Ha a gyorsulás nulla, akkor v = v0 + 0 · t = v0 = állandó. A mozgás ilyenkor egyenes vonalú egyenletes mozgás, melynek sebessége állandó, ezért grafikonja az időtengellyel párhuzamos (3.ábra). (Előzőekben már megtárgyaltuk.)

Ábra 1 megtett út számítása Az olyan egyenes vonalú egyenletesen változó mozgás esetén, amelynél a test kezdősebessége v0 nagyságú, t időpontban pedig v a sebesség nagysága, továbbá a gyorsulás és a kezdősebesség iránya megegyezik, az elmozdulás (itt: megtett út) egy derékszögű trapéz területének felel meg: (a trapézt az órán felbontottuk egy téglalapra és egy derékszögű háromszögre, melyeknek könnyen megállapíthattuk a területüket, melyeknek az összege az elmozdulással egyenlő) s= v0·Δt + {(Δv/Δt)/2}·Δt, ahol a Δv/Δt=a-val s= v0 ·t + (a/2)·t2

Ábra 1 Ha a gyorsulás a sebességgel megegyező irányú, akkor a függvény monoton növekvő

Ábra 2 megtett út számítása Nem szabad megfeledkezni arról, hogy a gyorsulás ilyen esetben negatív, így az elmozdulás a t értékétől függően pozitív, nulla vagy akár negatív is lehet. Például egy emeleti ablakból függőlegesen feldobott labda elmozdulása a mozgás első szakaszában még pozitív, amikor újra az ablak magasságában van, akkor nulla, és a földre éréskor nulla. A két háromszög területének összeadásakor ugyanazt az összefüggést kapjuk, mint az Ábra 1-nél. s= v0 ·t + (a/2)·t2

Ábra 2 Ha a gyorsulás a kezdeti sebességgel ellentétes irányú, akkor monoton csökkenő

ÖSSZEGZÉS Összességében. a következőket mondhatjuk ki: Kezdősebességgel induló egyenletesen változó mozgást végző test esetében a mozgást úgy tekinthetjük, mintha vátl=(v0+v)/2 átlagsebességgel egyenletesen haladna a mozgó test v = v0 + a × t s= v0 ·t + (a/2)·t2 s={(v0+v)/2}·t Figyelem! Csak itt és most lehet átlagsebességet így számolni!! (egyébként tudjuk, összes út osztva összes eltelt idővel!!)

Ábra 3 megtett út számítása Ha az egyenes vonalú, egyenletesen változó mozgást végző test álló helyzetből indul, akkor, akkor v0 =0 v=a·t Ebben az esetben az elmozdulás értelemszerűen: s= (a/2)·t2 Ezt az összefüggést négyzetes úttörvénynek is nevezzük.

Ábra 3 Ha a gyorsulás nulla, akkor v = v0 + 0 ∙ t = v0 = állandó Ábra 3 Ha a gyorsulás nulla, akkor v = v0 + 0 ∙ t = v0 = állandó. A mozgás ilyenkor egyenes vonalú egyenletes mozgás, melynek sebessége állandó, ezért grafikonja az időtengellyel párhuzamos

FELADATOK A példafeladatokat JPG file-ban találhatják meg a menüben. Házifeladat példák: -téma első óráját követően: Moór Á. Középiskolai Példatár: 41-45-ig -téma második óráját követően:Moór Á. Középiskolai Példatár: 46, 47, 50 Szorgalmi: -a téma kezdetét követő 3 hét alatt leadható a Moór Ágnes Középiskolai Példatár: 41-91-ig kidolgozva külön lapon, egy tantárgyi ötösért!!! Dolgozatban várhatóan 2-3 elméleti kérdés-meghatározás és 2-3 feladat-megoldás lesz. Dolgozat időpontja: órán kerül bejelentésre Dolgozatot követően, akik 1, 2, 3-as jegyet szereztek a dolgozatukra, 1 héten belül kötelezően leadják nekem a Moór Ágnes Középiskolai Példatár: 41-91-ig kidolgozva külön lapon! Már nem ötösért! Csak gyakorlásként!

ÉRDEKES LINKEK http://phet.colorado.edu/en/simulations/category/physics/motion (EZ UGYAN ANGOL NYELVŰ, de hát Önök jól tudnak angolul!) www.sdt.sulinet.hu http://www.szertar.com/ http://realika.educatio.hu/ http://metal.elte.hu/~phexp (kísérletek) Dr. Juhász András HA VALAKI VALAMILYEN ÉRDEKESET TALÁL A NETEN SZÓLJON NEKEM, HOGY BŐVÍTHESSÜK A LISTÁT!!!

FELHASZNÁLT IRODALOM Fizika 9-Maxim Kiadó Fizika 9- Dr. Halász Tibor-Mozaik Kiadó Fizika 9-Nemzeti Tankönyvkiadó www.sdt.sulinet.hu Ötösöm lesz fizikából-Gulyás János...-Műszaki Kiadó Fizika Középiskolásoknak - Dr. Siposs András-Korona Kiadó Fizika Mechanika - Dr. Zátonyi – Ifj. Zátonyi Fizika Szakközépiskolai Összefoglaló Feladatgyűjtemény http://metal.elte.hu/~phexp (kísérletek) Dr. Juhász András