1111 Budapest, Műegyetem rkp. 3-5. Előadó: Dr. Szilágyi Ferenc Tel: (361) 463 1530 Fax: (361) 463 3753 MÉRNÖKÖKOLÓGIA Előadó: Dr. Szilágyi Ferenc Dr. Fleit Ernő
ÓRALÁTOGATÁS ÓRA ALATTI REND ZÁRTHELYIK VIZSGAKÉRDÉSEK JEGY- ÉS ALÁÍRÁSSZERZÉS FELTÉTELEI JEGYZET TANKÖNYVEK ÉS AJÁNLOTT IRODALOM FELKÉSZÜLÉST SEGÍTŐ KÉRDÉSEK TANTÁRGY PROGRAM OKTATÁSI SEGÉDESZKÖZÖK (ÍRÁSVETÍTŐ, POWER POINT, VIDEO) ftp://vcst.bme.hu
IRÁNYOK Globális összefüggések Ökológiai célú beruházások mérnöki vonatkozásai Mérnöki létesítmények ökológiai hatásai
TÉMAKÖRÖK Globális összefüggések (népesedés, termelés, fogyasztás, fejődés, ökológiai hatások) Természetes szennyvíztisztítók Ökológiai folyószabályozás (elvek, módszerek) Épített mocsarak (Kis-Balaton) Környezeti hatásvizsgálatok (ipari példákon) Ipari parlagterületek rehabilitációja Folyóvízi gátak ökológiai hatásai (GNV) Hőszennyezés (Paks, Tisza II) Toxikológia, ökotoxikológia (cianid, Tisza) Bioindikáció Biomanipuláció
Térbeli skálák
A mérnöki beavatkozások jövőbeli ökológiai hatása
A jövő kiszámíthatósága Kockázat "Ismeretlen" bizonytalanság Meglepetés
KÖVETKEZTETÉS: Az "ismeretlen" bizonytalanság és a meglepetés a hagyományos mérnöki gyakorlattól idegen kezelési elveket követel. Kulcsszerepet kap a megelőzés és az ökológiai rendszer visszacsatolásainak beágyazása a tervezésbe és a működtetésbe.
VANNAK KULCSPARAMÉTEREK A víz a vízi ökoszisztéma közege, a vizes élőhelyeken a ciklikus megújulást lehetővé tevő zavaró tényező, a szárazföldön gyakran korlátozó tényező. A vízi ökoszisztémák elsősorban a vízminőségre és a fizikai viszonyok változására, a vizes élőhelyek többsége a vízjárás jellemzőire, a szárazföldi növénytársulások a talajvízszintre érzékenyek.
FELISMERÉSEK Természeti erőforrások kimerülőben vannak. Az emberiség rövid- és hosszútávú érdekei ellentétben állnak egymással. A fejlődés jelenlegi formája hosszú távon nem tartható fenn. Fenntartható fejlődésre van szükség.
GONDOK A FOGALOM MEGHATÁROZÁSOK KÖRÜL Ecological engineering Ecotechnology Environmental engineering Applied ecology Engineered natural systems Biotechnology Genetical engineering
MÉRNÖK ÖKOLÓGIA DEFINÍCIÓJA Fenntartható ökoszisztémák tervezése és létesítése, amelyek mindkettő előnyére integrálják az emberi társadalmat és a természeti környezetet. CÉLOK Ember által degradált ökoszisztémák helyreállítása. Új, fenntartható ökoszisztémák kifejlesztése.
A FÖLD ELTARTÓKÉPESSÉGE „Think globally, act locally” („Gondolkodj globálisan, cselekedj helyben”) A FÖLD ELTARTÓKÉPESSÉGE Eltartóképesség, mint ökológiai fogalom Passzív alkalmazkodás az adott eltartóképességhez (pl. préda – ragadozó)
Optimista és pesszimista szcenáriók léteznek Eltartóképesség az emberi társadalomban Eltartóképesség aktív módosítása (pl. technikai fejlődés) A Föld eltartóképessége nehezen becsülhető, mert: Milyen fejlődés lesz a harmadik világban milyen mértékű lesz a nyersanyag hasznosítás Optimista és pesszimista szcenáriók léteznek
Környezeti javak és a termelés összefüggése Anyagi javak Környezeti javak Termelési lehetőségek (TL) görbéje Anyagi javak alacsony kihasználása = Olcsó termelés Anyagi javak magas kihasználása = Drága termelés
Az eltartóképesség és a gazdaság különböző modelljei (1) A népesség és a gazdaság fizikai nagysága idő Eltartóképesség népesség és gazdaság Eltartóképesség Optimista modell: Eltartóképesség időben nő a gazdasággal
Optimista szcenáriok alapja: Az emberiség megoldja jövőbeni problémáit. Következmény: az eltartó képesség bővíthető
Az eltartóképesség és a gazdaság különböző modelljei (2) eltartóképesség népesség és gazdaság idő eltartóképesség a népesség és a gazdaság fizikai nagysága Eltartóképesség korlátos
Az eltartóképesség és a gazdaság különböző modelljei (3) idő eltartóképesség népesség és gazdaság A népesség és a gazdaság fizikai nagysága Eltartóképesség korlátos
Az eltartóképesség és a gazdaság különböző modelljei (4) idő eltartóképesség népesség és gazdaság A népesség és a gazdaság fizikai nagysága Katasztrófa modell
Pesszimista szcenáriók alapja: · Termodinamika I. főtétele: Megmaradás elve o Energiát és anyagot vesz fel a társadalom. o Szennyező anyagot ad le. o A készletek és a teherviselő képesség véges. o Következmény: az újrahasznosítás csak enyhíti a problémát Termodinamika II. főtétele: Entrópia növekedés o Entrópia növekedés = környezetrombolás o A folyamatot csak lassítani lehet o Következmény: a végállapot kedvezőtlen az emberiség számára
GDP és a szennyezés mértékének kapcsolata Mennyiségi index idő GDP Környezetvédelmi ösztönzők bevezetése Tisztább és hatékonyabb technológiák alkalmazása Az elmélet: A GDP-ben mért növekedés és a szennyezés közötti kapcsolat szétválasztása
MÉRNÖK ÖKOLÓGIA TÖRTÉNETE 60-as években kezdődött (Odum) Kezdetben a környezet manipulálását jelentette Alacsony energia felhasználású technológiák "Barátságban a természettel" koncepció (70-es évek) Környezetbarát technológiák alkalmazása, melyek gazdaságosak és mély ökológiai ismereteken alapulnak (80-as és 90-es évek) A mérnök ökológia segít a környezetünk állapotának konzerválásában és a környezeti károk helyreállításában (90-es évek vége)
ALAPELVEK A természet önszabályozó képességére alapozás Mérnök ökológia az ökológiai elméletek választóvize A rendszer-megközelítésbe vetett bizalom A nem megújuló természeti erőforrások megőrzése A természet védelme
ÖNSZABÁLYOZÓ KÉPESSÉGRE ALAPOZÁS Önszabályozás az élő rendszerek sajátja Folyamatok megértése Természetes önszabályozó folyamatok kihasználása Eredmények: o Erőforrások minimalizálása o Költségek minimalizálása o Hatékonyság növekedése Nem a technikát kényszerítjük a természetre (hagyományos mérnöki szemlélet), hanem a természeti folyamatokat használjuk ki.
MÉRNÖK ÖKOLÓGIA AZ ÖKOLÓGIAI ELMÉLETEK VÁLASZTÓVIZE Ökológiai elméletek igazolása vagy cáfolata Összeköttetés az elmélet és a gyakorlat között Elmélet és gyakorlat együtt fejlődését szolgálja Jó példák: o Szűrőmezők o Veszélyeztetett fajok szaporítása o Természetvédelmi élőhely rekonstrukciók Rossz példák: o Idegen fajok betelepítése o Át nem gondolt biomanipulációk
RENDSZER-SZEMLÉLET A rendszer egésze nem a részek összege (ökoszisztéma jellegéből adódóan) A rendszer egészét kell megérteni és nem az egyes részeit részletesen leírni o A fontos folyamatok identifikálása o Az összefüggések feltárása o Szintézis A matematikai modellezés eszköze lehet a megértésnek Példa: Kis-Balaton Védőrendszer
A NEM MEGÚJULÓ ERŐFORRÁSOK MEGŐRZÉSE A földi ökoszisztémák: o A napenergián alapulnak o Mérsékelt beavatkozásnak ellenállnak (önfenntartók) Modern környezeti technológiák kevés nem megújuló energia forrást használnak (tervezési + létesítési fázis), majd önfenntartók (működési fázis) Példa: Természetes szennyvíztisztítók
AZ ÖKOSZISZTÉMÁK MEGŐRZÉSE A mérnök ökológia eszköztárába számos lehetőség belefér Nem szükséges az ökoszisztémákat megszüntetni, azokat ki lehet használni a hasznunkra Következmény: természet megőrzése
A MÉRNÖKÖKOLÓGIA SZÜKSÉGESSÉGE A környezeti problémák megoldása ökoszisztéma megközelítést tesz szükségessé Egyik környezeti probléma megoldása során másik keletkezik (pl. szennyvízkezelés szennyvíziszap elhelyezés) Sok a beavatkozás ökoszisztémák életébe, de kevés az ökológiai ismeret (pl. tó rehabilitáció, mocsár létesítés) Mérnöki és ökológiai gyakorlat közelítése szükséges A mérnöknek tudnia kell tevékenysége ökológiai korlátait (Főmegbízó: Anyatermészet) A természet védelme a mérnöki gyakorlat alapelvévé vált. (Jó példa: tájépítészet, Florida)
A MÉRNÖKÖKOLÓGIA HOSSZÚ TÁVÚ HATÁSAI Globális változásokhoz alkalmazkodás, vagy azok megelőzése (éghajlatváltozás, ózonlyuk) Meglévő rehabilitációs gyakorlat fejlesztése (bányászat, tórekonstrukció) Környezeti károk helyreállítása javítja az életnívót Mérnökökológusok jövőbeni munkája biztosított. Kérdés: Ki fizeti a révészt?
FENNTARTHATÓSÁG (1) Filozófiai megközelítés (idea, cél, törekvés). Rövid és hosszú távú célok összehangolása. Jelenlegi cselekvések hosszú távú hatásainak figyelembe vétele. Mérnöki tevékenység nem kezelhető kizárólag technikai szinten. Fenntarthatósági kritériumok figyelembe vétele szükséges a tervezésnél.
FENNTARTHATÓSÁG (2) Alapkérdés: Mit tehetünk ma a jövő generációjáért? Gondok: Idea és a valóság ellentmondása. A fenntarthatóság mérése. Az alkalmazás technikai nehézségei. Az alkalmazás társadalmi akadályai. Az alkalmazás gazdasági akadályai.
A FENNTARTHATÓ FEJLŐDÉS ALAPELVEI Az ember életminőségének javítása Gondoskodás az életközösségekről Az eltartó képesség megőrzése A diverzitás megőrzése A nem megújuló erőforrások felhasználásának minimalizálása Az emberi viselkedés alakítása „Gondolkodj globálisan, cselekedj helyben” Fejlődés és természetvédelem összhangja Globális szövetség
Nyílt anyagforgalom folyamatai (vastag nyíllal a fontosabb folyamatok) Qr Elhasznált termékek Termék Alapanyagok Termelés és fogyasztás szennyezései TÁRSADALOM TERMÉSZET Qt Qf Qa Qsz Qe Termelés Fogyasztás Újrahasznosítás
Zárt anyagforgalom folyamatai (vastag nyíllal a fontosabb folyamatok) Qr Termelés Termék Alapanyagok Elhasznált termékek Termelés és fogyasztás szennyezései TÁRSADALOM TERMÉSZET Qt Qf Qa Qsz Qe Fogyasztás Újrahasznosítás
FENNTARTHATÓSÁG ÉS VÁLTOZÁS (1) A természeti folyamatok lényegi eleme a változás. Az ökológiai rendszerek és a társadalmi struktúrák is változnak. A mérnöki létesítmények a jövőnek készülnek. A flexibilis tervezés lényeges eleme a fenntarthatóságnak. Új mérnöki szemléletre van szükség.
FENNTARTHATÓSÁG ÉS VÁLTOZÁS (2) Rossz példák: Kis-Balaton Szügy Regionális szennyvíz hálózatok Gazdasági vonzatok lényegesek (gazdag országokban van nagyobb esély flexibilisebb rendszerekre). Adaptív management = Ha nem elég az információ, tanulva fejlessz!
FENNTARTHATÓSÁG ÉS SKÁLÁK Önfenntartó minimális térség, mint térbeni egység. Példa: lakótelep, város, régió, ország Időbeni fenntarthatóság léptéke változó. Példa: kisebb időléptékben nagyobb terhelés fenntartható, hosszabb távon ugyanolyan terhelés nem fenntartható változást eredményez.
FENNTARTHATÓSÁG ÉS KOCKÁZAT Kockázat és haszon összhangja (példák: árvizek, járványok, környezeti ártalmak). Hangsúly a megelőzésen van. Kockázat elemzés (milyen kár következhet be, milyen valószínűséggel, milyen következményekkel, mit lehet tenni ellene).
MÉRNÖK ÖKOLÓGIAI LÉTESÍTMÉNYEK OSZTÁLYOZÁSA 1. Funkció szerint TÍPUS PÉLDA Szennyezés csökkentés meglévő ökoszisztémával Szennyvíz vagy –iszap újrahasznosítása Természeti erőforrások visszanyerése Helyreállított mocsarak, többfunkciós halastavak Degradált ökoszisztémák helyreállítása Tórehabilitáció, felszíni bányák rekultivációja Módosított ökoszisztémák környezeti problémák megoldására Biomanipuláció Fenntartható ökoszisztémák Mezőgazdasági biotermelés
MÉRNÖK ÖKOLÓGIAI LÉTESÍTMÉNYEK OSZTÁLYOZÁSA 2. Szerkezet szerint TÍPUS CÉL PÉLDA Mezokozmosz Kísérleti Tózárványok Ökoszisztéma Gyakorlati probléma megoldása Természetes szennyvíztisztítás, űrtechnológia Regionális rendszer Gyakorlati problémák megoldása Vízgyűjtő rendezés (Általér) Táplálék termelés
ÖKOLÓGIAI ÁLLAPOTFELMÉRÉSEK * A felmérések az alábbiakra terjednek ki: - Készletek - Hatótényezők - Hatásviselők * Felhasznált adatok - Alapadatok - Állapot jellemzők (alapadatokból származtatva) - Minőségi mutatók (integrált jellemzők)
HATÁSVIZSGÁLAT ELEMEI (VIZES PÉLDA) Természetföldrajzi jellemzés * Tájegység * Éghajlat * Domborzat * Magassági helyzet * Geológiai háttér * Talaj * Vízellátottság, vízmérleg
Természetvédelmi jellemzők * Védettségi állapot * Szennyezésekkel szembeni érzékenység * Társadalmi hasznosítás * Degradáció mértéke
Medermorfológia és mederanyag * Vízmélység * Vízfelület * Mederalkat * Mederanyag minősége * Borítottság Vízháztartási jellemzők * Vízmérleg * Vízkicserélődés
Élettelen természet által meghatározott sajátosságok * Áramlási viszonyok * Hullámzás * Hőmérséklet * Halobitás Élő és élettelen természet által meghatározott viszonyok * Luciditás * Aerobitás * Trofitás * Szaprobitás * Toxicitás
Élő természet által meghatározott sajátságok * Konstruktivitás (építő szervezetek) * Destruktivitás (lebontó szervezetek)
Vizsgálandó társulás típusok * Bakterioplankton * Fitoplankton * Zooplankton * Makrofitonok * Fontosabb rovarcsoportok futóbogarak, lepkék) * Makroszkópos gerinctelenek * Halak * Madarak
Minőségi mutatók * Reprezentativitási index (élőlénycsoport összes fajszáma hogyan viszonylik az országoshoz) * Kvalifikációs index (Legalább három élőlény csoport szerint mennyire értékes a terület)
TERMÉSZETVÉDELEM Ember előtti állapot Fajok kipusztulása hosszú ideig tartott Fajok átalakuláshoz elegendő idő állt rendelkezésre Ökoszisztéma átalakulása lassú volt
Emberi hatások A Föld ökoszisztémájára gyakorolt hatás gyors Élőlények genetikai átalakulásához nincs idő Szűk tűréshatárú fajok hájérbe szorulnak vagy kipusztulnak Kipusztulás okai: Élőhely megszűnik vagy felaprózódik Táplálékforrás megszűnik A faj egyedeit kipusztítják (kritikus méret alatti populáció)
Természetvédelem célja: Természetes és természeteshez közeli tájak megőrzése Állat és növényfajok fennmaradásának elősegítése Az emberi hatások következményeinek csökkentése Vörös Könyv (védett és veszélyeztetett fajok listája)
Kipusztult fajok száma Fajok kipusztulásának átlagos sebessége TERMÉSZETVÉDELEM A valaha élt fajok száma 100-250 millió. Ma kb. 5-10 millió faj él. Időszak Kipusztult fajok száma Fajok kipusztulásának átlagos sebessége 1600 és 1900 között 75 4 év 1900 és 1960 között 1 év 1970 és 2000 között 1-1,5 millió Naponta 100-140
A fajok veszélyeztetettsége szerint öt osztály: Kipusztult (bizonyíthatóan) Kihalással fenyegetett (sürgős védelem szükséges) Erősen veszélyeztetett Veszélyeztetett Potenciálisan veszélyeztetett
Veszélyeztetett biotopok Források Oligotróf lápok és vizek Vízfolyás-menti ligetek Száraz és félszáraz gyepek
Természetvédelmi intézkedések Irányelvek: Élőhelyek védelme Szükséges védett terület az ország 10 % -a Természetvédelem azonos súlyú legyen a gazdaság egyéb ágazataival Fajok védelme az egész TVT-re kiterjed Minimálisan szükséges terület (fajok szerint változó) Közlekedő folyosók biztosítása (pl. Ramsari Egyezmény) Védett területen a természetvédelem prioritása első Állandó együttműködés a többi gazdasági ágazattal
Együttműködési lehetőségek a mezőgazdasággal (példa) Táblák méretének korlátozása Művelési ág változtatás Intenzív hasznosítás csökkentése (műtrágyák, növényvédő szerek, stb.) Szerves hulladékok újrahasznosítása Termelés és fenntartás összhangja Termelési támogatás helyett területi támogatás
A területek természetvédelmi besorolása (német minta) Természetvédelmi terület: Megkülönböztetett védelem ritkaság, jellegzetesség, tudományos vagy esztétikai érték alapján (pl. Kis Balaton) Nemzeti park: Emberi tevékenység által alig befolyásolt terület. Gazdag fajállomány fenntartása (pl. Bükki NP) Tájvédelmi körzet: Természeti erőforrások újratermelése vagy helyreállítása (pl. Pilisi TVK) Természeti park: Üdülésre alkalmas vagy alkalmassá teendő, TVT-t és/vagy TVK-t is magában foglaló terület Természeti emlék. Egyedi védendő objektumok (pl. fa) Védett tájrészlet.Ember által intenzíven használt területen megőrzendő eredeti biotóp (pl. tó, sövény, ikrázó hely, stb.)
A TERMÉSZETVÉDELEM ÖSSZESÍTŐ ADATAI Száma Területe ha Fokozottan védett ha Nemzeti parkok 9 440 839 76 717 Tájvédelmi körzetek 37 341 695 30 579 Természetvédelmi területek 145 26 380 1 338 Természeti emlék 1 Országos jelentőségű védett természeti területek összesen: 192 808 914 108 634 Önkormányzatok által védett természeti területek 1 067 36 000 Mindösszesen 1 259 844 914 Magyarország területe 9 303 000 Védett területek aránya az ország területéhez képest 9,1 %
Magyarország természetvédelmi térképe (KöM 2000)
A Természetvédelmi Törvény célja (1) A természeti értékek védelme és fenntartható használatának elősegítése. A társadalom egészséges, esztétikus természet iránti igényének kielégítése. A természetvédelem hagyományainak megóvása.
A törvény területei (1) A természeti értékek és területek állapotának értékelése, megóvása, fenntartása, helyreállítása, fejlesztése. A magyar részről elfogadott nemzetközi szerződések betartása. A biológiai sokféleség fenntartása. A természet védelméhez fűződő érdekek érvényesítése.
A törvény területei (2) A természet védelmével kapcsolatos tevékenységek. A természet védelmével kapcsolatos irányítás és támogatás. A természet védelme felelőségi rendszerének meghatározása. A természet védelme intézményrendszerének kialakítása, fejlesztése során. A védelemre érdemes természeti értékek és területek körének megállapítása. A védett értékeket veszélyeztető jelenségek feltárása. A védett értékek károsodásának megelőzése, elhárítása. A védett természeti értékek megőrzése, fenntartása.
KISVÍZFOLYÁSOK ÖKOLÓGIAI MEDERRENDEZÉSE Árvízvédelem Vízminőség Vízfolyás szabályozás Hagyományos Ökológiai (új megközelítés)
Általános ökológiai rendezőelvek Árvízvédelmi funkció meghagyása. Vízvisszatartás a vízgyűjtőn. Szennyezések elleni védelem. Öntisztuló képesség megőrzése. Természetes állapot meghagyása és fenntartása. Közhozzáférés biztosítása. Nem minden a gazdaságilag kifejezhető érték. Minden vízfolyás egyedi rendszer. Az ökológiai rendszer, a tápláléklánc ne sérüljön.
Irányelvek Hidrológiai állapotfelmérés Ökológiai állapotfelmérés Beavatkozások lehetséges alternatívái Kiviteli tervezés
Tervezési szempontok A kisvízfolyások árhulláma általában nem haladja meg a 24 órás időtartamot. Csak a szükséges mértékű vízrendezés indokolt. Minimális kiépítési vízhozamot kell meghatározni (költségek és a károk összege minimum). A vízfolyások belterületi szakaszainál Q 3 % előfordulási valószínűségű vízhozamra kell tervezni. Beépítési kötöttségek miatt hosszú távú tervezés. A nagyvíz/kisvíz aránya miatt az osztóműves. Kevés fenntartási munkát igénylő meder. Kisebb méretű kisvízi meder és parkosított nagyvízi meder. Közhozzáférés biztosítása.
Műszaki kérdések Hidraulikai kérdések Vízszintes vonalvezetés Magassági vonalvezetés Keresztszelvények Esés
Technológiai megoldások (1) A kiöntés gyakoriság csökkentése Árvízi tározók építése. A vízfolyás töltésezése. Árapasztó vápa építése. A meder bővítése. A meder mélyítése.
Technológiai megoldások (2) Eséscsökkentő műtárgyak Biotechnológiai megoldások Élő rőzseművek Élő dorongművek Kombinációk
A technikai szemléletű vízfolyás mederrendezés jellemzői Hosszú egyenes szakaszok, nyugodt vonalvezetés. Közel egyenletes vízmélység hosszabb szakaszon. Egyenletes esés és sebesség, kisebb oxigénfelvétel. Fás vegetáció nélküli meder és mederszegély. A meder és 3-6 m-es füves parti sáv a vízpart. Fajszegény élővilág. Megnövelt medermélység. Az egyenes vonalú, növényektől mentes meder. A vízkicserélődés megszüntetése. Nincs tápanyag visszatartás. A rendezés jelentős része gépesíthető. Egységes módszerek és termékek használhatók. Kisebb a helyigény.
Természetes vízfolyás Kanyarok és inflexiók hirtelen változása. Rövid szakaszokon belül jelentősen változó vízmélység. Változó esés és sebesség. Surranó szakaszok fokozott oxigénfelvétele. A vízfolyás fák, cserjék szegélyezik. A víz hőmérséklete egyenletesebb. A vízben fényigényes növények ritkák. A parti sávban változatos az élővilág. A meder természetes mélységéhez tartozó talajvízhelyzet. A medertől távolabb is természetes nedves élőhely-szigetek. Szerves kapcsolat a környezettel. Terhelés visszatartás a mederben.
Az ökológiai vízrendezés gondjai Sokféle szakember összehangolt munkája szükséges. Minden tervezés egyedi. Nagyobb terület szükséges. A közvélemény bevonása ma még nehézkes. Drágább és bonyolultabb munkát igényel.
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK
VÍZI KÖZMŰ HELYZET MAGYARORSZÁGON Vízellátás 90% felett Csatornázás kb. 40 %-os 3000 településen nincs csatorna Közműolló nyitott Következmény: felszíni és felszín alatti vízkészlet szennyeződik
GAZDASÁGI HELYZET Tőkehiány Gazdaság átalakítása folyik Privatizáció Környezetvédelem felértékelődése KÖVETKEZMÉNY: Olcsó, hatékony és környezetkímélő szennyvíztisztítási eljárások iránt növekszik az igény
SZENNYVÍZTISZTÍTÁSI TECHNOLÓGIÁK intenzív (konvencionális) szennyezőanyag-eltávolítás felgyorsítva energia vegyszerek természetes szennyezőanyag-eltávolítás nem felgyorsított természeti erőforrások használata "low cost technology"
CÉLKITŰZÉS Különböző természetes tisztítók egymás közötti összehasonlítása Összehasonlítás az eleveniszapos tisztítással
SZEMPONTOK Hidraulikai terhelés Elfolyó víz minősége Hatásfok Egészségügyi vonatkozások Területigény Élettartam Beruházási és működési költség
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK Előnyök: környezetbarát alacsony építési, működtetési és fenntartási költség alacsony energiaigény működtetés különleges szakképzetséget nem igényel szélsőséges üzemelési körülmények között is működtethető más célokra nem használható területeken is kialakítható esztétikus diffúz szennyeződéseket is képes kezelni tájba illeszthető
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK Hátrányok: nagy területigény (hosszú tartózkodási idő) speciális követelmények (topográfia, talajtípus) hatásfok szezonális változása beüzemelés hosszadalmas lehet építési hibák nem derülnek ki azonnal
SZÁRAZFÖLDI RENDSZEREK szikkasztás szennyvíz-öntözés - irrigation talajszűrés - slow rate infiltration gyors homokszűrés - rapid infiltration gyökérmezős szennyvíztisztítás - root zone system, subsurface flow wetland
VÍZI RENDSZEREK tavak, lagúnák - pond, lagoon anaerob fakultatív (aerob-anaerob) aerob levegőztetett halastavak úszó v. lebegő vizinövényes - floating plant system nádastó - free water surface wetland csörgedeztetés - overland flow
LASSÚ BESZIVÁROGTATÁS a szennyvizet növényzettel borított területre vezetik tisztítás a víz talajon történő átszivárgása közben előnyei: az alkalmas talajok széles skálája talajvíz visszapótlás hátrányai: a többi szárazföldi módszernél nagyobb területigény (az alacsony terhelések miatt) talajvízszennyezés veszélye
LASSÚ BESZIVÁROGTATÁS Szennyvíz elosztása felszíni, árkos permetező technika
LASSÚ BESZIVÁROGTATÁS SZENNYEZŐANYAG-ELTÁVOLÍTÁSI MECHANIZMUSOK lebegőanyag : a talaj általi szűrés nitrogén: növényi felvétel, ammónia volatilizáció, nitrifikáció/denitrifikáció ammónium-ion: talajrészecskékhez kötődhetnek, ahol mikroorganizmusok nitrifikálják foszfor: adszorpció, kiülepedés, növényi felvétel, ha a növényzet betakarítását rendszeresen végzik
SZENNYVÍZ ÖNTÖZÉS Szennyvízöntözés = lassú beszivárogtatás egy speciális fajtája fő cél a növényzet (valamilyen haszonnövény) vízzel és tápanyaggal való ellátása
Magyarországi gyakorlat NYÁRFÁS ÖNTÖZÉS Magyarországi gyakorlat Árkos elosztás Drénhálózat!
SZENNYVÍZ ÖNTÖZÉS A szennyvízöntözés előnyei: alternatív vízforrás alternatív vízforrás a tisztítási eljárás kombinálása a termeléssel a haszonnövények ellátása vízzel és tápanyaggal az adott terület mezőgazdasági értékéknek növelése a műtrágya szükséglet csökkentése Hátrányok és korlátozó tényezők: az öntözött növényekre mérgező hatású összetevők előzetes eltávolítása szükséges szigorú egészségügyi és környezeti szabályozások a lehetséges szennyeződésekre és mérgező összetevőkre
GYORS HOMOKSZŰRÉS szennyvizet egy talajjal kitöltött földmedencébe engedik a szennyvíz a talajon való átszivárgás során tisztul meg a lassú beszivárogtatástól elsősorban a hidraulikai terhelés mértékében különbözik talaj szemcseeloszlása fontos legjobb talajok a viszonylag durva textúrájúak (agyagos iszapok, iszapos homokok) növényzet nincs - terhelés túl magas ahhoz, hogy a tápanyagfelvételnek jelentős hatása lehessen az eltávolításban rendszerint utótisztító, vagy mechanikailag előtisztított szennyvíz tisztítására használják
GYORS HOMOKSZŰRÉSI TECHNOLÓGIA (1)
GYORS HOMOKSZŰRÉSI TECHNOLÓGIA (2)
Medence keresztmetszete
GYORS HOMOKSZŰRÉS Nitrogéneltávolítás: nitrifikáció/denitrifikáció 1-3 nap elárasztás, 5-10 nap száradás a talaj felső rétegében a nitrifikációhoz szükséges aerob körülmények visszaállhatnak A foszfor eltávolítása a talajszemcsékhez való adszorpció eredménye.
GYÖKÉRMEZŐS SZENNYVÍZTISZTÍTÁS szigetelt medence vagy csatorna, amelyet porózus anyaggal töltenek ki Ebben vízi-mocsári növényzet nő A víz szintje megfelelő működés esetén a felszín alatt marad Az áramlás iránya vízszintes, vagy függőleges lehet
A gyökérzónás szennyvíztisztító egyszerűsített rajza
Felülnézet
GYÖKÉRMEZŐS SZENNYVÍZTISZTÍTÁS a szennyvíz a rizómákkal sűrűn átszőtt talajon történő átfolyás során tisztul meg A növényi tápanyagok eltávolítása növényi felvétel, talajszemcsékhez kötődés és biológiai folyamatok során megy végbe A szervesanyagok eltávolításában biológiai folyamatok vesznek részt, míg a lebegőanyagokéban a szűrés
GYÖKÉRMEZŐS SZENNYVÍZTISZTÍTÁS
TERVEZÉSI SZEMPONTOK BOI5-RE Ah = Szűrőágy felület m2-ben Q = Napi átlagvízhozam m3-ben C0 = A befolyó víz BOI5 koncentrációja mg/L-ben Ct = Az elfolyó víz elvárt BOI5 koncentrációja mg/L-ben KBOI = Állandó (0,1 m/nap)
NÁDÁGYAS SZENNYVÍZTISZTITÁS ELŐNYEI: Megfelelő hatékonyság Alacsony működési költség Ellenőrizhető működés Kis energia igény Nincs szükség regionális csatornahálózatra HÁTRÁNYOK: Nagy terület igény Gyenge növényi tápanyag eltávolítási hatásfok Kevés üzemi tapasztalat
CSÖRGEDEZTETÉS a szennyvíz egy megfelelő lejtésű, fűvel borított, teraszosított lejtőn folyik le tisztítási folyamatok: kiülepedés szűrés adszorpció mikrobiális átalakítás lebontás
CSÖRGEDEZTETÉS
CSÖRGEDEZTETÉS talaj áteresztőképessége: <5 mm/h finom szerkezetű agyag, agyagos vályog növényzet (fűféleség) biztosít közeget a tisztításban szerepet játszó mikroorganizmusoknak, akadályozza az eróziót és fölvesz növényi tápanyagokat periodicitás
TAVAK, LAGÚNÁK egy vagy több nyílt vízfelszínű, szigetelt medencéből állnak Miközben a szennyvíz átfolyik rajtuk, a szennyezőanyagokat mikroorganizmusok lebontják
ANAEROB TAVAK olyan magas szerves terhelést kapnak, hogy a víztérben aerob zóna nem tud kialakulni Átlagos mélységük 2,5-5 m, a szennyvíz tartózkodási ideje 20-50 nap A lejátszódó fő biológiai folyamatok: savképződés és anaerob bontás
FAKULTATÍV TAVAK 1,2-1,8 m mélyek, felső rétegük aerob, míg az alsó rétegekben anaerob viszonyok uralkodnak A szennyvíz tartózkodási ideje általában 7-120 nap A fakultatív működés kulcsa a felszíni algák által termelt oxigén és a felső réteg átlevegőzése a felette lévő légrétegből Az oxigént a felső vízréteg aerob baktériumai használják föl a szervesanyag lebontásához
AEROB TAVAK teljes mélységükben tartalmaznak oldott oxigént (algák fotoszintézise, felszín átlevegőzése) sekélyek (30-60 cm mélység) rövid tartózkodási idő : 2-6 nap
ÚSZÓ – LEBEGŐ VÍZINÖVÉNYES RENDSZER vízi jácint (Eichhornia crassipes), a békalencse (Lemna sp., Spirodela sp., and Wolffia sp.) A békalencse fajok kisméretű, néhány mm nagyságú levélkével és 1 cm-nél rövidebb gyökérrel rendelkeznek A vízi jácint egy édesvízi évelő növény, lekerekített, felfelé álló, fényes zöld levelekkel és csúcsos virágzattal A gyökere természetes körülmények között 30 cm hosszú
ÚSZÓ VAGY LEBEGŐ NÖVÉNYES TISZTÍTÁS növények szerepe: vízfelszín beterítése - alganövekedés megakadályozása a kiülepedést is elősegítik vízi jácint gyökérzetén mikroorganizmusok tudnak megtelepedni, valamint oxigént juttat a vízbe a gyökerén keresztül
Úszó vízinövényes szennyvíztisztításra alkalmas területek
NÁDASTÓ
NÁDASTÓ a víz szintje a talajszint felett helyezkedik el vízmélység: 10 - 80 cm A szennyezőanyag-eltávolítási folyamatok nagy része a vízben zajlik le, a talajnak kisebb a szerepe A növényzet víz felett lévő szára, levelei gátolják a fény bejutását a vízbe, igy szabályozva az alga növekedést.
NÁDASTÓ Az elhaló növényi részek a téli hónapok alatt jó hőszigetelést nyújtanak, csökkentve a szél és a konvekció által eltávozó hőmennyiséget. A növények oxigéntranszportja a gyökértérbe szintén fontos, bár a fő oxigénforrás a felszíni átszellőzés.
Néhány nádas tavas szennyvíztisztító telep elhelyezkedése Észak-Amerikában
Megjegyzés: Zárójelben az átlagok MŰKÖDÉSI JELLEMZŐK 0,14-1,6 Öntözés 0,6-3,0 303-18925 Talajszűrés 23-56 303-48000 Gyors homok- Szűrés 5,1-11,7 (8,2) 1,4-22,3 (7) 337-4147 Nádastó 19,1 (3,1) 2,4 (10) 49-2248 Úszó vízi- Növényes 0,9-23,0 (5) 0,87-26,0 (7,8) 1-200 Gyökér- mezős FAJLAGOS FELÜLET m2/lakos HIDRAULIKUS cm/nap KAPACITÁS m3/nap TÍPUS Megjegyzés: Zárójelben az átlagok
ELTÁVOLÍTÁSI HATÁSFOK (%) 69 93 80 Gyors homokszűrés 15-81 (50) 12-65 60-93 (80) 51-89 Nádastó 16-67 14-72 (40) 20-95 10-94 Úszó vízinövényes 11-94 10-88 60-98 51-95 Gyökérmezős Összes N P Lebegő- anyag BOI5 Típus Megjegyzés: Zárójelben az átlagok
KÖZEGÉSZSÉGÜGYI JELLEMZŐK ELTÁVOLÍTÁS (LOG10 EGYSÉG) 1-4 1-6 Fertőtlenítés Stabilizációs tó 1-2 Lagúna 0-1 0-2 Eleveniszapos rendszer Ülepítés Vírus Baktérium Típus
GYÖKÉRZÓNÁS TELEPEK BOI ELTÁVOLÍTÁSI HATÁSFOKA A HIDRAULIKUS TERHELÉS FÜGGVÉNYÉBEN
GYÖKÉRZÓNÁS TELEPEK TP ELTÁVOLÍTÁSI HATÁSFOKA A HIDRAULIKUS TERHELÉS FÜGGVÉNYÉBEN
GYÖKÉRZÓNÁS TELEPEK TN ELTÁVOLÍTÁSI HATÁSFOKA A HIDRAULIKUS TERHELÉS FÜGGVÉNYÉBEN
A TERMÉSZTES SZENNYVÍZTISZTÍTÓK KÖLTSÉGEI 0,03-0,09 600-1000 Nádastó 0,12-0,14 500-1000 Úszó vízinövényes 0,01-0,16 600-1200 Levegőztetett tó 0,07-0,13 Stabilizációs tó 0,08-0,16 Csörgedeztetés 0,05-0,10 450-900 Gyors homokszűrés 0,10-0,20 800-2000 Talajszűrés 0,01-0,10 1000-3000 Szikkasztó Működési költség USD/m3 Beruházási költség USD/m3/nap Típus
A GYÖKÉRMEZŐS ÉS NÁDASTAVAS SZENNYVÍZTISZTÍTÁS BECSÜLT KÖLTSÉGE 126 63 000 180 18 000 Gyökérmezős Fajlagos eFt/m3/d Létesítési e Ft 27 162 000 41 123 000 64 31 500 90 9 000 Nádastó 6000 m3/d 3000 m3/d 500 m3/d 100 m3/d Kapacitás
A NÁDASTÓ BECSÜLT ÜZEMELTETÉSI KÖLTSÉGE 2,80 6 120 5 760 360 6 000 4,20 4 620 4 380 240 3 000 5,40 1 960 1 780 180 1 000 7,90 1 440 1 260 500 8,00 735 635 120 250 13,30 480 100 Fajlagos Ü.K. Ft/m3 Összesen eFt/év Amort. Munkabér Kapacitás Q m3/nap
A STABILIZÁCIÓS TÓ ÉS AZ ELEVENISZAPOS RENDSZER FENNTARTÁSI ÉS MŰKÖDÉSI KÖLTSÉGÉNEK ÖSSZEHASONLÍTÁSA
A STABILITÁCIÓS TÓ ÉS AZ ELEVENISZAPOS RENDSZER BERUHÁZÁSI KÖLTSÉGÉNEK ÖSSZEHASONLÍTÁSA
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK KIS TELEPÜLÉSEKEN SEGÍTHETNEK A SZENNYVÍZTISZTÍTÁS MEGOLDÁSÁBAN ESETTANULMÁNY: SZÜGY
Vízmintavétel a telep alábbi mintavételi helyein: nyers szennyvíz (az energiatörő aknából); ülepített szennyvíz (a kétszintes ülepítő kifolyójánál); tiszított szennyvíz (a fertőtlenítő medence előtti gyűjtőaknából); elvezetett szennyvíz, melynek mintázása 1995. júliusáig a fertőtlenítő kifolyójából, a nádastó üzembe lépése után pedig a tó kifolyó szelvényénél történt.
A meghatározott vízkémiai jellemzők: kromátos kémiai oxigénigény (KOICr); ötnapos biológiai oxigénigény (BOI5) összes nitrogén (TKN); ammónia-nitrogén (NH4-N); összes foszfor (TP); PO4-foszfor (PO4-P); anionaktív detergens (ANA-det.); széntetrakloridos extrakt (CCl4 extr.); lebegőanyag (TSS); összbaktériumszám, 20 fok, i/ml; összbaktériumszám, 37 fok, i/ml;
Vízhozam és vízhőfok adatok
Szügyi szennyvíztelep, eltávolítási hatásfok, % (1) 100 98 92 95 MAXIMUM 44 16 -70 37 19 -53 MINIMUM 20 42 15 18 38 SZÓRÁS 86 81 23 82 78 25 ÁTLAG Telep Gyökér-mező Ülepítő BOI, % KOI, %
Szügyi szennyvíztelep, eltávolítási hatásfok, % (2) 100 97 84 62 MAXIMUM -19 -98 -87 -20 -63 -81 MINIMUM 34 41 36 31 33 SZÓRÁS 46 28 9 50 11 ÁTLAG Telep Gyökér-mező Ülepítő NH4-N, % Összes nitrogén, %
Szügyi szennyvíztelep, eltávolítási hatásfok, % (3) 100 99 91 92 36 MAXIMUM 3 -236 26 5 -122 MINIMUM 31 30 64 20 25 40 SZÓRÁS 71 70 -51 76 67 -14 ÁTLAG Telep Gyökér-mező Ülepítő PO4-P, % Összes foszfor, %
Szügyi szennyvíztelep, eltávolítási hatásfok, % (4) 100 98 81 94 90 MAXIMUM 17 -18 -200 -38 -22 -267 MINIMUM 24 28 65 27 25 74 SZÓRÁS 69 61 -31 84 36 ÁTLAG Telep Gyökér-mező Ülepítő ANA detergens, % CCl4 extrakt, %
Szügyi szennyvíztelep, eltávolítási hatásfok, % (5) 100 99 MAXIMUM 87 80 50 74 75 -43 MINIMUM 3 5 39 6 7 36 SZÓRÁS 98 95 97 94 76 ÁTLAG Telep Gyökér-mező Ülepítő Össz.baktériumszám, 37°C, % Össz.baktériumszám, 20C , %
Szügyi szennyvíztelep, eltávolítási hatásfok, % (6) 100 97 87 MAXIMUM 67 25 -32 MINIMUM 9 16 27 SZÓRÁS 88 82 55 ÁTLAG Telep Gyökér-mező Ülepítő Lebegőanyag %
BEAVATKOZÁSOK AZ EUTROFIZÁCIÓ SZABÁLYOZÁSÁRA Beavatkozások a vízgyűjtőn Pontszerű terhelések szabályozása (1) Lakossági szennyvíz Csatornázás és szennyvíztisztítás fejlesztése terhelés növekedés Háromlépcsős tisztítás (mechanikai, biológiai tisztítás, P és N eltávolítás) Szennyvíz elvezetés Vízpótlás (hígítóvíz hozzávezetés)
Pontszerű terhelések szabályozása (2) Állattartó telepek Hígtrágyás almos technológia Hígtrágya komposztálás (esetleg biogáz termeléssel kombinálva) Megszüntetés Tisztítás Hígtrágya öntözés
NEM–PONTSZERŰ TERHELÉSEK Mezőgazdasági nem–pontszerű terhelés Műtrágya felhasználás Művelési ág Művelési technológia Tevékenység felhagyás Városi lefolyás Záportározók Városi lefolyás kezelése nádastavon
BEFOLYÓ VÍZ KEZELÉSE Kémiai kezelés Wachnbach tározó (Németország) Előtározó Balaton (Kis–Balaton tározó) Szűrőmező (nádastó) Tatai Öreg–tó (terv) Vízelvezetés
TAVON BELÜLI BEAVATKOZÁSOK Célja Fajtái Alkalmazási terület Hasznosság Költség Előnyök és hátrányok
Foszfor inaktiválás az üledékben Vas(III)–klorid Kotrás Hínárirtás Foszfor inaktiválás az üledékben Vas(III)–klorid Alumínium–szulfát Kalcium–hidroxid Kalcium–karbonát Hamu Ritkaföldfém–sók Üledék lefedése
Oxigénviszonyok javítása (főleg mély tavak esetében) Hypolimnion levegőztetése Vegyszeres kezelés (hidrogén–peroxid) Cirkuláltatás Hypolimnion elvezetése Árnyékolás Biotechnikai eljárások Élőlények betelepítése (amúr, busa) Beavatkozás a táplálék láncba Kevés ismeret ÓVATOSSÁG!!
A GAIA HIPOTÉZIS LÉNYEGE: A 70-es évek végén alakult ki. James Lovelock nevéhez fűződik LÉNYEGE: A Fõld úgy viselkedik, mint egy élőlény = önmaga egy élő szervezet = "Living Planet". A Föld olyan élőlény, amelynek életciklusa milliárd években mérhető. Többet jelent, mint a bioszféra. Egymilliárd évvel a kialakulása után életcsírák jelentek meg rajta, melyek evolúciója vezetett a mai kép kialakulásához. Az evolúció nem a versengés, hanem a kooperáció eredménye. Elnevezés a mitológiából szármázik.
BIZONYÍTÉKOK: Saját maga fejlesztésére képes (evolúció). Önszabályozó rendszert alkot. Homeosztázis jellemző rá (állandó hőmérséklet, oxidáltsági állapot, savasság, stb.), ami negatív visszacsatolások révén valósul meg. Saját létfeltételeit teremti meg és fejleszti tovább. Nincs termodinamikai egyensúlyban (pl. légkör összetétele, átlag hőmérséklete)
KÉRDÉSEK: Gaia épp most milyen fejlettségi állapotában van? Az emberi faj léte hogyan illik a képbe? Vajon Gaia nem része-e egy galaktikus élő rendszernek? Ha igen, a részek hogyan kommunikálnak egymással? Képesek vagyunk-e egyáltalán megismerni ezt a rendszert? Mi lehet a célja és a sorsa egy ilyen élő rendszerben az embernek?
KÖRNYEZETI ASPEKTUSOK: Az emberi fajra nemcsak a saját működése jelent veszélyt, hanem az is, hogy erre a működésre Gaia hogyan reagál. Nem tudható, hogy a tevékenységünk zavarást, sérülést, vagy katasztrófát okoz-e ebben az élő rendszerben.
EMBER ÁLTAL OKOZOTT KÖRNYEZETI PROBLÉMÁK: Népesség és környezetszennyezés összefüggése. A környezetszennyezés az egyedsűrűség csökkenéséhez vezet. A forráskihasználás és a népesség növekedés veszélyezteti a kiegyensúlyozott fejlődést. Az egyedszám növekedés növeli az országok külső függését. A társadalmi problémák jogalapot adnak a környezettel kapcsolatos globális megállapodások felrúgására.
MEGOLDÁSI LEHETŐSÉGEK: Kétgyerekes családmodell Anyagok újrafelhasználása Agrárágazat fenntartható fejlesztése Erdőirtások helyett erdőgazdálkodás Importtól való függőség csökkentése Természeti erőforrások megőrzése