Adatsorok típusai, jellegadó értékei

Slides:



Advertisements
Hasonló előadás
2. előadás.
Advertisements

I. előadás.
Petrovics Petra Doktorandusz
STATISZTIKA II. 1. Előadás
Gazdaságelemzési és Statisztikai Tanszék
Grafikus ábrázolási módszerek
A szórás típusú egyenlőtlenségi mutatók
Adattípusok, adatsorok jellegadó értékei
Mérési pontosság (hőmérő)
Gazdaságelemzési és Statisztikai Tanszék
Közlekedésstatisztika
Adatfeldolgozás.
4. előadás.
3. előadás.
3. előadás.
A középérték mérőszámai
Microsoft Excel Függvények VI..
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Matematikai alapok és valószínűségszámítás
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Statisztika.
Leíró statisztika III..
Valószínűségszámítás
Többváltozós adatelemzés
Adatleírás.
I. előadás.
Viszonyszámok A viszonyszám két egymással logikai kapcsolatban álló statisztikai adat hányadosa V= A/B V: a viszonyszám A:a viszonyítás alapját képező.
Középértékek – helyzeti középértékek
Adattípusok, adatsorok jellegadó értékei
4. előadás.
A számítógépes elemzés alapjai
Regionális elemzések módszerei
Konzultáció – Leíró statisztika október 22. Gazdaságstatisztika.
A számítógépes elemzés alapjai
A szórás típusú egyenlőtlenségi mutatók
Oszlopdiagram dr. Jeney László egyetemi adjunktus
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
A nagyvárosok, mint az európai térszerkezet kitüntetett pontjai
A területi polarizáltság mérése: Duál mutató
A területi koncentráció elemzése
Szóródási mérőszámok, alakmutatók, helyzetmutatók
Regionális elemzések módszerei
Egyéb grafikus ábrázolási módszerek: grafikon és radardiagram
2. előadás Viszonyszámok
Térbeli gazdasági folyamatok tényezőkre bontása
Dr. Varga Beatrix egyetemi docens
Speciális szóródás: Koncentráció
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
Területi adatbázis-kezelés, jellegadó értékek
A területi polarizáltság mérése: Duál mutató
Adatfeldolgozási ismeretek műszeres analitikus technikusok számára
dr. Jeney László egyetemi adjunktus Regionális elemzések módszerei
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
5. előadás.
A szórás típusú egyenlőtlenségi mutatók
Területi eloszlások összevetése: Hoover index
A leíró statisztikák alapelemei
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
Az európai nagyvároshálózaton belüli fejlettségi különbségek
Rangsoroláson és pontozáson alapuló komplex mutatók
Területi egyenlőtlenségek grafikus ábrázolása: Lorenz-görbe
A területi koncentráció mérése: Hirschman–Herfindahl index
4. előadás.
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
Mérési skálák, adatsorok típusai
A nagyváros–vidék kettősség az európai térszerkezetben
A területi koncentráció mérése és a kitüntetett helyzetek
Előadás másolata:

Adatsorok típusai, jellegadó értékei dr. Jeney László egyetemi docens jeney@elte.hu Regionális elemzések módszerei III. Szociológia alapszak, regionális és településfejlesztés specializáció; Minden alapszak 2017/2018, II. félév BCE GGF Intézet Gazdaságföldrajz és Jövőkutatás Központ

Statisztikai fogalmak Sokaság: A megismerni kívánt, megfigyelt egységek halmaza Ismérvek: A sokaság jellemzésére, részekre bontására alkalmas vizsgálati szempontok Területi elemzések: legalább 2 ismérv Területi ismérv Változók: időbeli, mennyiségi, minőségi ismérvek Adatok jól csoportosíthatók az összehasonlíthatóságuk szerint  mérési (vagy adat) skálák rendszere 2

Mérési skálák 3

A mérési skálák rendszere Tulajdonság Sajátosságok Jellemző példák Arány xa / xb Megkülönböztetés, sorrend, különbség, arány Van elméleti minimum, azonos előjelű Népességszám, jövedelem, utasforgalom Intervallum xa – xb Megkülönböztetés, sorrend, különbség Pozitív és negatív értékek Vándorlási különbözet Ordinális (sorrendi) xa ≥ xb Megkülönböztetés, sorrend Nehezen mérhető, csak sorrendbe állítható Sorrendek, rangok, eltérő funkcionális szintek Nominális xa ≠ xb Megkülönböztetés Nem számszerű Név, születési hely, nem 4

Mérési skálák hierarchiája Mindegyik mérési skála rendelkezik az alatt lévő tulajdonságaival A „hierarchia csúcsán” az arányskála áll Legteljesebb összehasonlításra ad lehetőséget Mérési skála meghatározza a matematikai–statisztikai módszereket Brazil válogatott nem 63X jobb mint a magyar 0 átlagú adatsor: korlátzott módszertan (pl. nem lehet az átlag %-ában megadni) Többváltozós vizsgálatoknál: Többféle mérési skála, de azonos mérési skálájú adatokra van szükség  adat-transzformáció Leggyakrabban: intervallum- vagy arányskálán mért jellemzők ordinális adatskálára átalakítása (pl. komplex mutatóknál: rangsorolás) Azonos értékek: rangszámok is azonosak Páratlan számú (pl. 3) adat egyezése: középső rangszám (8., 9., 10. helyett 9., 9. és 9.) Páros számú (pl. 2) adat egyezése: rangszámok átlaga (4. és 5. helyett 4,5. és 4,5.) Nincs holtversenyben elsőség: 1. és 2. helyett 1,5. és 1,5 (1. és 1. helyett) 5

Nem fajlagos és fajlagos mutatók 6

Adatsorok 2 fő típusa: nem fajlagos és fajlagos mutatók Nem fajlagos (abszolút) mutatók Pl. népességszám, GDP, személygépkocsik száma, terület, városlakók száma Jelölése: xi azaz x abszolút mutató értéke adott „i” régióban Fajlagos mutatók (relatív vagy származtatott mutatók) Pl. egy főre jutó GDP, ezer lakosra jutó személygépkocsik, népsűrűség, városlakók aránya Lehet százalékos részesedés is: pl. városlakók aránya Jelölése: yi azaz y fajlagos mutató értéke adott „i” régióban Általában 2 nem fajlagos mutató hányadosa, pl. GDP és népesség (ritkán 2 fajlagos mutató hányadosa, pl. megyei GDP/fő az országos átlagos GDP/fő %-ában) Esetükben súlyozni kell (pl. súlyozott átlag, súlyozott szórás) A súly a fajlagos mutató képletének nevezőjében van, jelölése fi azaz f súly értéke adott „i” régióban Súly gyakran népességszám, de nem mindig 7

Nem fajlagos – fajlagos mutatók valamint a súly közötti átszámítások Ha a nem fajlagos mutató (GDP) és a súly (népességszám) ismert A fajlagos mutató (GDP/fő): a nem fajlagos mutató és a súly hányadosa Ha a nem fajlagos (GDP) és a fajlagos mutató ismert (GDP/fő) A súly (népesség): a nem fajlagos és a fajlagos mutató hányadosa Ha a fajlagos mutató (GDP/fő) és a súly (népesség) ismert Nem fajlagos mutató (GDP): a fajlagos mutató és a súly szorzata 8

Adatsorok jellegadó értékei 9

Adatsorok jellegadó értékei Középértékek Számtani átlag / súlyozott számtani átlag Mértani átlag Helyzeti középértékek (módusz, medián) Szélső értékek Maximum Minimum Adatsor terjedelme és szórása (átvezet a területi egyenlőtlenségi mutatók felé) Terjedelem-típusú mutatók Szórás-típusú mutatók 10

Középértékek: átlagok Számtani átlag Az eredeti számok helyébe helyettesítve azok összege változatlan n db adat (xi) Excel  fx= ÁTLAG() Súlyozott számtani átlag n db fajlagos adat (yi) Súly (fi): a fajlagos mutató nevezőjében szereplő adat Mértani átlag Az eredeti számok helyébe helyettesítve azok szorzata változatlan 11

Helyzeti középértékek Medián Az az érték, aminél kisebb és nagyobb adatok száma egyenlő (felező pont) Extrém adatokat tartalmazó adatsorok esetében érdemes használni Kvantilisek: kvartilis (negyedelő), kvintilis (ötödölő), decilis (tizedelő), percentilis (századoló) Medián/átlag: egyenlőtlenségi mutató (minél kisebb, annál nagyobb az egyenlőtlenség) Excel  fx= MEDIÁN() Módusz („divatos érték”) A legtöbbször előforduló érték Lehet többmóduszú (többcsúcsú) adatsor is Excel  fx= MÓDUSZ() 12

A szélső értékek és a terjedelem típusú egyenlőtlenségi mutatók Maximum Az adatsor legnagyobb értéke (xmax) Excel  fx= MAX() Minimum Az adatsor legkisebb értéke (xmin) Excel  fx= MIN() Alapja a terjedelem típusú egyenlőtlenségi mutatóknak Range (szóródás terjedelme) Range-arány (adatsor terjedelme) Relatív range 13

Súlyozatlan relatív terjedelem kiszámításának lépései (abszolút mutatóknál) Ki kell számítani az adatsor maximumát (függvényvarázsló: max) Ki kell számítani az adatsor minimumát (függvényvarázsló: min) Ki kell vonni a maximális értékből a minimálist (ez a terjedelem) Ki kell számítani az adatsor (sima) átlagát (függvényvarázsló: átlag) El kell osztani a terjedelmet az átlaggal 14

Súlyozatlan relatív terjedelem kiszámítása Excelben 1 xa xb 2 1. régió 24 10 3 2. régió 4 3. régió 5 4. régió 12 6 maximum =MAX(B2:B5) =MAX(C2:C5) 7 minimum =MIN(B2:B5) =MIN(C2:C5) 8 terjedelem 24 =B6-B7 0 =C6-C7 9 átlag 10 =ÁTLAG(B2:B5) 10 =ÁTLAG(C2:C5) relatív terjedelem 2,4 =B8/B9 0 =C8/C9 15

Súlyozott relatív terjedelem kiszámításának lépései (fajlagos mutatóknál) Ki kell számítani az adatsor maximumát (függvényvarázsló: max) Ki kell számítani az adatsor minimumát (függvényvarázsló: min) Ki kell vonni a maximális értékből a minimálist (ez a terjedelem) Ki kell számítani az adatsor (súlyozott) átlagát El kell osztani a terjedelmet a súlyozott átlaggal 16

Súlyozott relatív terjedelem kiszámítása Excelben F G 1 ya fa xa yb fb Xb 2 1. régió 24 =B2*C2 10 =E2*F2 3 2. régió 4 3,5 14 35 3. régió 4,5 45 5 4. régió 12 6 összeg 50 100 7 max. 24 =MAX(B2:B5) 10 =MAX(E2:E5) 8 min. 0 =MIN(B2:B5) 10 =MIN(E2:E5) 9 terj. 24 =B6-B7 0 =E6-E7 s. átlag 5 =D6/C6 10 =G6/F6 11 rel terj 4,8 =B9/B10 0 =E9/E10 17