BME Üzleti gazdaságtan Andor György. BME Ismétlés ›5 Profit és a nettó jelenérték –5.1 Közgazdasági értelemben mi nem profit? –5.2 A számviteli és a gazdasági.

Slides:



Advertisements
Hasonló előadás
A bizonytalanság és a kockázat
Advertisements

A kockázat kezelése döntési feladatokban
A kockázat kezelése döntési feladatokban
Befektetési döntések 6. Szeminárium
1. Közgazdaságtani alapfogalmak
A TŐKEKÖLTSÉG.
Piaci portfólió tartása (I.)
Vállalatok pénzügyi folyamatai
A diákat jészítette: Matthew Will
DÖNTÉSELMÉLET A DÖNTÉS = VÁLASZTÁS A döntéshozatal feltételei:
Készült a HEFOP P /1.0 projekt keretében PÉNZÜGYI MATEMATIKA ÉS KOCKÁZATANALÍZIS VI. Előadás TŐKEPIACI ÁRFOLYAMOK MODELLJE Elektronikus.
Gazdálkodási modul Gazdaságtudományi ismeretek II. Vezetés és kommunikációs ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
KOCKÁZAT – HOZAM.
Miért hozzuk a döntést, mi a cél?
Vállalatok pénzügyi folyamatai
9.Szeminárium – Tőkeköltség Szemináriumvezető: Czakó Ágnes
Befektetési döntések Bevezetés
$ Információ Következmény Döntés Statisztikai X.  Gyakorlati problémák megoldásának alapja  Elemzéseink célja és eredménye  Központi szerep az egyén.
7. A különböző megtakarítási formák összehasonlítása
Alapfogalmak.
Binomiális eloszlás.
3. Előadás: Döntés bizonytalanság mellett
2. Döntéselméleti irányzatok
Gazdálkodási modul Gazdaságtudományi ismeretek II. Vezetés és kommunikációs ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
PÉNZÜGYI MENEDZSMENT 4. Dr. Tarnóczi Tibor PARTIUMI KERESZTÉNY EGYETEM
Vállalati pénzügyek alapjai
BEFEKTETÉSEK ÉS PÉNZÜGYI PIACOK 3.előadás PhDr. Antalík Imre SJE-GTK október 8.
A TŐKEKÖLTSÉG. Tőkeköltség a tőkepiacról  Tőkepiac: pénzt cserélünk pénzre  Pl. pénzt adok egy vállalatnak valamilyen jövőbeli (várható) kifizetésekért.
BME Üzleti gazdaságtan Andor György. BME Ismétlés ›6 Tőkejavak árazódása –6.1 Várható hasznosság modellje –6.2 Kockázatkerülési együttható –6.3 Relatív.
2008. tavasz1Menedzsment és vállalkozásgazdaságtan MENEDZSMENT ÉS VÁLLALKOZÁSGAZDASÁGTAN.
BME Üzleti gazdaságtan Andor György. BME Jegyzetolvasási-teszt II. ›Október 29. (kedd) ›Jegyzet 6-7. fejezet 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN2.
BME Üzleti gazdaságtan Andor György. BME Ismétlés ›6 Tőkejavak árazódása –6.1 Várható hasznosság modellje –6.2 Kockázatkerülési együttható –6.3 Relatív.
BME Üzleti gazdaságtan Andor György. BME Ismétlés ›6 Tőkejavak árazódása –6.1 Várható hasznosság modellje –6.2 Kockázatkerülési együttható –6.3 Relatív.
BME 3 A pénz, mint általános termelési tényező ›Nem a „pénz használatának” áráról van szó –Kamatot a termelési tényezőkhöz (vagy a vásárlóerőhöz) való.
BME Üzleti gazdaságtan Andor György. BME Ismétlés ›1 Gazdaságpszichológiai alapok – motiváció, drive, homo oeconomicus –1.1 Motiváció, szükséglet és hasznosság.
2009. tavaszTőzsdei spekuláció tavaszTőzsdei spekuláció2 Tőzsdei kereskedés Tőzsdejáték –Egry József u-i ERSTE fiók Portfólió elmélet –Csökkenő.
BME Üzleti gazdaságtan Andor György. BME Ismétlés ›6 Tőkejavak árazódása 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN2.
BME Üzleti gazdaságtan Andor György. BME 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN2 ›Tőkejavak árazódási modellje vagy Tőkepiaci árfolyamok modellje –Capital.
BME Üzleti gazdaságtan Andor György. BME Ismétlés ›5 Profit és a nettó jelenérték –5.1 Közgazdasági értelemben mi nem profit? –5.2 A számviteli és a gazdasági.
2015. őszBefektetések I.1 V. Optimális portfóliók.
2015. őszBefektetések1 Hol tartunk… IV. Hozamok és árfolyamok –IV.1. Folytonos és diszkrét hozam Bármely időszak növekedését egyenletes nagyságúnak tekintve.
BME Üzleti gazdaságtan konzultáció - szigorlat Andor György.
Bohák András - Befektetések 2014/15. tavaszi félév Befektetések 5. előadás.
Bevezetés a játékelméletbe
Üzleti gazdaságtan Andor György.
Vállalati pénzügyek II.
Pénzügy szigorlat Üzleti gazdaságtan
Üzleti gazdaságtan Andor György.
Andor György ~ Pénzügyek
Üzleti gazdaságtan Andor György.
4 A pénz, mint általános termelési tényező
Üzleti gazdaságtan Dr. Andor György.
Üzleti gazdaságtan Andor György.
SZIGORLATI TÉTELEK - PÉNZÜGY
SZIGORLATI TÉTELEK - PÉNZÜGY
Üzleti projektek a CAPM tükrében (I.)
Üzleti gazdaságtan Andor György.
Hol tartunk… IV. Hozamok és árfolyamok
Üzleti gazdaságtan Andor György.
VEZETŐI DÖNTÉSEK „Navigare necesse est” dönteni mindenkinek kell.
Vállalati pénzügyek.
Tőzsdei spekuláció tavasz Tőzsdei spekuláció.
Menedzsment és vállalkozásgazdaságtan
Hol tartunk… IV. Hozamok és árfolyamok
Andor György ~ Pénzügyek
Üzleti gazdaságtan Andor György.
Hol tartunk… IV. Hozamok és árfolyamok
Üzleti gazdaságtan Andor György.
Dinamikus beruh.gazd.-i szám.-ok (I.)
Gazdaságinformatikus MSc
Előadás másolata:

BME Üzleti gazdaságtan Andor György

BME Ismétlés ›5 Profit és a nettó jelenérték –5.1 Közgazdasági értelemben mi nem profit? –5.2 A számviteli és a gazdasági profit –5.3 A gazdasági profit forrásai –5.4 Profit a jövőben és a jelenre vetítve –5.5 Nettó jelenérték és a belső megtérülési ráta 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN2

BME 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN3 ›Tőkejavak árazódási modellje vagy Tőkepiaci árfolyamok modellje –Capital Asset Pricing Model –CAPM 6 Tőkejavak árazódása

BME 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN4 ›Kockázat, kockázatkerülés, biztos egyenértékes, kockázati prémium, normális eloszlás, volatilitás… › E(F) és σ(F) ›A kockázatos hozam is a normális eloszlással lesz megragadható. –A konstanssal osztás és kivonás nem változtat az eloszlás normalitásán (de a paraméterein természetesen igen).

BME 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN5 ›Mint már korábban megállapítottuk, a hatékonyan árazó tőkepiacon logikus kapcsolat kell legyen a biztos jelenbeli és a kockázatos jövőbeli pénzösszegek között. –A befektetők elvárt kamatait (hozamait) az időért és a kockázatért járó prémiumokra bontjuk fel: –Kockázatmentes kamat és kockázati hozamprémium › E(r RP ) „valahogy” a volatilitással függ majd össze, de hogy pontosan hogyan, ennek nem jártunk még a végére.

BME 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN6 σ(r)σ(r) E(r)E(r) rfrf E(rM)E(rM) σ(rM)σ(rM) rMrM

BME 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN7 ›Több időperiódus (év) esetén –Az időért járó prémium időben konzisztens. –A kockázatosságot okozó tényezők az üzleti világban időben állandó intenzitású véletlenséget okoznak. –Tehát az időt és a kockázatosságot egyszerre megragadó (egységnyi időre értelmezett) tőkeköltség állandó.

BME 6.1 Várható hasznosság modellje ›Bernoulli –A döntéshozó az egyes kimeneteleket nem a (várható) „matematikai” értékük szerint, hanem a (várható) hasznosságuk szerint súlyozva minősíti. –A döntési modellben tehát a várható hasznosság jelenik meg a várható értékkel szemben. –Ez a csökkenő határhasznosság elve miatt jelent alapvetően más megközelítést. ›„A vagyon növekményének hasznossága fordított arányban lesz a már korábban birtokolt javak mennyiségével.” ›„Figyelembe véve az emberi természetet, úgy vélem, hogy a fenti hipotézis sokakra látszik érvényesnek.” 20138

BERNOULLI 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN9 DANIEL

SZENTPÉTERVÁRI PARADOXON Egy érmét addig dobálunk fel, amíg (például) fejet nem kapunk. A nyeremény összege 2 azon hatványa, ahányadikra sikerült fejet dobnunk. Egy ilyen játék várható értéke (várható nyereménye) végtelen: Az emberek viszont nem hajlandóak e játék lehetőségéért sokat fizetni… Hogyan magyarázná meg mindezt a várható hasznosság modelljével? 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN10

BME ›Homo oeconomicusi döntés kockázatos helyzetekben –1) Számba veszi a kockázatos választási lehetőségeket; –2) Meghatározza e kockázatos lehetőségek lehetséges kimeneteleit ( F i ) és ezekhez bekövetkezési valószínűségeket ( p i ) is rendel; –3) Az összevethetőséghez (várható) hasznossági értéket E(U) rendel e kockázatos lehetőségekhez ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN

BME ›A kockázatos helyzetekben való racionális viselkedéshez viszonylag összetett konzisztencia-követelményeknek kapcsolódnak. –Neumann János és Oskar Morgenstern ›Játékelmélet, 1944 –Várható hasznosság modellje ›Axiómarendszer ›Képlet: ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN

BME ›Axiómarendszer –1) A döntéshozó képes hasznosságuk szerint rangsorolni az egyes lehetséges kimeneteleket. (Összehasonlíthatóság axiómája.) –2) Amennyiben a döntéshozó A-t előnyben részesíti B-vel szemben, valamint B-t C-vel szemben, akkor A-t is előnyben fogja részesíteni C-vel szemben. (Tranzitivitás axiómája.) –3) A fenti A, B és C lehetőségeket tekintve mindig létezik (a legjobb) A-nak és (a legrosszabb) C-nek egy olyan valószínűségekkel súlyozott változata, amely mellett a döntéshozó közömbös lenne e változat és a B kimenet választása között. (Mérhetőség vagy folytonosság axiómája.) ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN

BME –4) Amennyiben a döntéshozó A-t előnyben részesíti B-vel szemben, akkor előnyben fogja részesíteni az A p 1 valószínűséggel és B (1–p 1 ) valószínűséggel kombinációt az A p 2 és B (1–p 2 ) kombinációval szemben, ha p 1 > p 2. (Monotonitás axiómája.) –5) Az egyes lehetséges kimenetelek hasznosságai és bekövetkezésük valószínűségei egymástól függetlenek kell, hogy legyenek. (Függetlenség axiómája.) ›Ha ezek teljesülnek, akkor igaz, hogy ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN

AXIÓMÁK MEGSÉRTÉSE Ritka betegség, 600 áldozat A: 200-at megmentünk B: 33% senki nem hal meg, 67% mindenki meghal (72% az A-ra voksolt) C: 400 meghal D: 33% mindenki túléli, 67% senki sem menekül meg (78% D-t választotta) 5% munkanélküliség ~ 95%-os foglalkoztatottság 40$-os színház jegy A: Korábban megvesszük, de elvesztjük B: Előadás előtt vennénk, de észrevesszük, hogy elvesztettünk 40$-t Az A esetben inkább hazamegy…. 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN15

ALLAIS- PARADOXON A : [ € (100%)] B : [ € (90%); 0 € (10%)] A többség A-t választja (pedig a B várható értéke ). C : [ € (10%); 0 € (90%)] D : [ € (9%); 0 € (91%)] Itt a többség D-t választja. Pedig 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN16

ELLSBERG - PARADOXON Két urna: 1) száz db piros és fekete golyó, ismeretlen arányban 2) száz db piros és fekete golyó, fele-fele arányban Egy urna és egy szín választás, ha talál: 100 €, ha nem: 0 €. A színekkel kapcsolatosan indifferensek voltak, viszont az urnákkal kapcsolatosan nem: többségük ragaszkodott a második urnához. 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN17

BME ›Szubjektív valószínűség

Bernoulli: „A találgatás művészete” ›A valószínűség – matematikai értelemben – nagy számban ismétlődő események relatív gyakoriságának határértéke. Laplace: „A valószínűségek analitikai elmélete” Gauss: „Mi a valószínűsége, hogy…” Keynes: „Értekezés a valószínűségről” A közgazdaságtanban a sokszori ismétlődés – legtöbbször – értelmezhetetlen. –Kockadobás eredménye vs. zöldmezős beruházás eredménye –Jövőre vonatkozó kérdések –Ott és akkor körülmények –Múltbeli adatok (nem is „ugyanarról”) 2013ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN19 Jacob Bernoulli Pierre-Simon Laplace Friedrich Gauss M. Keynes

BME ›Szubjektív valószínűség –Amennyire a hasznosság is szubjektív, úgy gyakran a valószínűség is. –Az események bekövetkezési valószínűségeit nem mindig tudjuk objektíven meghatározni. ›Csak ha pontosan ismerjük a valószínűségi szerkezetet. ›Ha nem, ami egyáltalán nem ritka helyzet, kénytelenek vagyunk „csak” szubjektív valószínűség becslésekre hagyatkozni. ›Ezek viszont inkább csak az események bekövetkezésével kapcsolatos meggyőződések, „hitek” mértékei, és nem objektív, statisztikai vagy valószínűségelméleti alapú döntési paraméterek