Gazdaságstatisztika Hipotézisvizsgálatok általános kérdései Nemparaméteres próbák november 6. és november 13.
Becslés vs hipotézisvizsgálat Következtető statisztikai eszközök Egy véletlen minta ismeretében hogyan lehet becslést adni annak a sokaságnak bizonyos jellemzőire, amelyből a minta származik. Várható érték becslése ismeretlen és ismert sokasági szórás esetén Sokasági variancia becslése Sokasági arány becslése De nem mindig erre van szükség: el kell döntenünk, hogy a rendelkezésre álló egy vagy több minta származhat-e meghatározott tulajdonságokkal rendelkező egy vagy több sokaságból vagy összehasonlítási célok mérlegelni kell, hogy a mintavétel eredménye alátámasztja vagy cáfolja a feltevésünket Kvantitatív módszerek
A hipotézisvizsgálat lényege A vizsgálandó sokaságra vonatkozó ismereteink gyakran hiányosak és/vagy bizonytalanok sejtésünket hipotézisként fogalmazzuk meg, amelynek igazságáról meg kell győződni Hipotézis: sokasággal (!!!) kapcsolatos feltevés, amely vonatkozhat A sokaság eloszlására A sokaság eloszlásának egy vagy több paraméterére Az állítások helyességéről kétféleképpen lehet meggyőződni: Teljes körű adatfelvételt végzünk Mintavétel eredményei alapján következtetünk MINTAVÉTELI INGADOZÁS, MINTAVÉTELI HIBA Hipotézisvizsgálat: a sokaságra vonatkozó feltevés mintavételi eredményekre támaszkodó vizsgálata. A hipotézisvizsgálat annak mérlegelése, hogy egy sokaságra vonatkozó állítás mennyire hihető a mintavétel eredményeinek tükrében.
1. lépés: a null- és alternatív hipotézisek megfogalmazása Nullhipotézis (H 0 ): az a sokaságra vonatkozó feltevés, amelynek igazságáról a hipotézisvizsgálat során közvetlenül meg kívánunk győződni. Alternatív (vagy ellen-) hipotézis (H 1 ): a nullhipotézissel együtt minden lehetőséget kimerítő, azzal egymást kölcsönösen kizáró hipotézis, amelynek helyességéről közvetetten döntünk a hipotézisvizsgálat során. A kettő közül azt fogjuk igaznak tekinteni, elfogadni, amelyik a mintavétel eredménye alapján hihetőbbnek tűnik a másiknál A hipotézisek megfogalmazásának szempontjai: Megválaszolható legyen a bennünket érdeklő kérdés Egymást kizárják Mindig a nullhipotézis helyességéről döntünk, de az arról való döntés egyben közvetett döntés az alternatív hipotézisről. A hipotézisvizsgálat lényeges kérdései
Példa Igaz-e, hogy egy őrölt kávét töltő gép az előírásoknak megfelelően átlagosan 1kg töltősúlyú csomagokat készít? A sokaság várható értékére vonatkozó feltevést szeretnénk vizsgálni A töltőtömeg némileg szóródik A töltés szisztematikusan nem tolódik-e el valamelyik irányba, mert az vagy veszteséget okoz a vállalatnak, vagy a vevőket károsítja meg A szórásról nem mond semmit! A nullhipotézis: H 0 : μ=1kg A lehetséges ellenhipotézisek: H 1 : (1) μ≠1kg; H 1 : (2) μ>1kg; H 1 : (3) μ<1kg Kvantitatív módszerek
2. lépés: a próbafüggvény kiválasztása A hipotézisek vizsgálatára próbafüggvényt használunk: a mintából a sokaságra történő következtetést szolgálja A mintaelemek egy olyan függvénye, amelynek valószínűségi eloszlása a sokaság ismert tulajdonságait tekintetbe véve, a nullhipotézis igazságát feltételezve pontosan ismert. A próbafüggvényt eloszlásának ismerete teszi alkalmassá a nullhipotézis helyességének vizsgálatára: sokaság eloszlása, mintavétel módja, minta nagysága A próbafüggvények értékei mintáról mintára ingadozó jellemzők, azaz statisztikák. A próbafüggvények konstruálása elvi, matematikai feladat. A hipotézisvizsgálat lényeges kérdései
3. lépés: elfogadási és elutasítási (kritikus) tartomány kijelölése a próbafüggvény lehetséges értékeinek teljes tartományát két egymást át nem fedő részre bontjuk kritikus érték(ek) segítségével: elfogadási és elutasítási (kritikus) tartományra. A határt (a kritikus értékeket) úgy választjuk meg, hogy a próbafüggvény a nullhipotézis fennállása esetén előre megadott nagy ε valószínűséggel az elfogadási tartományba essen. Ha a próbafüggvénynek a rendelkezésünkre álló egy – esetleg több – minta adataiból számított értéke az elfogadási tartományba esik, akkor elfogadjuk a nullhipotézist, ellenkező esetben elvetjük azt. A kritikus tartományba esés α valószínűségét szignifikancia szintnek nevezzük (1%-10% között) A hipotézisvizsgálat lényeges kérdései
Kritikus értékek: Az elfogadási és elutasítási tartományt egymástól elhatároló c a és c f értékeket alsó és felső kritikus értéknek szokás nevezni. A kritikus értékeket mindig a kritikus tartomány részének tekintjük. A kritikus tartomány kijelölésére kétoldali kritikus tartomány használata esetén két kritikus értékre, egyoldali kritikus tartomány esetén pedig egy kritikus értékre van szükség. A kritikus értékek a szignifikancia szint és a próbafüggvény eloszlásának ismeretében egyértelműen meghatározhatóak Speciális táblázatok Gazdaságstatisztika
Egyoldali kritikus tartomány Kritikus Elfogadási Kritikus érték α 1-α Bal oldali kritikus tartomány KritikusElfogadási Kritikus érték α 1-α Jobb oldali kritikus tartomány Bal vagy jobboldali kritikus tartomány kijelölése: eleve arra számítunk, hogy a valóság meghatározott irányú eltérést mutat egy általunk feltételezett helyzettől. ha csak valamilyen feltételezett vagy előírt állapottól való adott irányú eltérés igazán fontos a számunkra. A próbafüggvény mintából nyert értéke elég kicsi-e (elég nagy-e) ahhoz, hogy a nullhipotézis helyett az alternatív hipotézis fennállását legyen indokolt feltételezni. A teljes kritikus tartományt a próbafüggvény eloszlásának vagy csak a bal, vagy csak a jobb szélére tesszük.
Kétoldali kritikus tartomány kijelölése: csak a nullhipotézisben feltételezett helyzettől való eltérés ténye érdekel bennünket, és közömbös az eltérés iránya. A próbafüggvény értéke akár kisebb, akár nagyobb lehet, mint a nullhipotézis fennállásakor A kritikus tartományba esés teljes valószínűségét egyenlő arányban szokás megosztani a kritikus tartomány két része között. Kétoldali kritikus tartomány KritikusElfogadási Kritikus érték α/2 1-α Kritikus α/2 Kritikus érték Két oldali kritikus tartomány
1. A null- (H 0 ) és alternatív (H 1 ) hipotézisek megfogalmazása 2. Olyan próbafüggvény keresése, amelynek eloszlása a nullhipotézis helyességét feltételezve és a próba alkalmazási feltételeit figyelembe véve egyértelműen meghatározható. 3. A szignifikancia szint (α) megválasztása, és a próbafüggvény lehetséges értéktartományának felosztása elfogadási és elutasítási tartományra. 4. Mintavétel, ez alapján a próbafüggvény, mint valószínűségi változó számszerű értékének meghatározása. 5. Döntés a hipotézisek helyességéről: ha a próbafüggvény értéke az előre kijelölt elfogadási tartományba esik, akkor elfogadjuk a nullhipotézist, Ha a próbafüggvény értéke az elutasítási tartományba esik, akkor elutasítjuk a nullhipotézist. A hipotézisvizsgálat lépései
Kvantitatív módszerek Statisztikai próbák elve f( 2 ) 22 DF 2 krit 2 szám =1- P( 2 szám < 2 krit ( )|H 0 igaz) = 1- = DF 2
Kvantitatív módszerek A hipotézisvizsgálat során elkövethető hibák Mintából következtetünk !!! Elsőfajú hiba ( ) Másodfajú hiba ( ) Minta-2 Minta-1 Minta-3 Hibát követhetünk el !!! H0H0 Döntés H 0 -ról a minta alapján Igaz Nem igaz Igaz Nem igaz Nincs hiba e Elsőfajú hiba A H 0 téves elvetése Másodfajú hiba A H 0 téves elfogadása Cél: a másodfajú hiba valószínűségének csökkentése (adott α mellett) Adott n mellett: ha α ↑ β ↓ ha α ↓ ↑ β ↑ Adott α mellett: ha n ↑ β ↓ ha próbafüggvény szórása ↓ β ↓
P-érték Az a legkisebb szignifikancia szint, amelyen a nullhipotézis épp elvethető az ellenhipotézissel szemben A próbafüggvény mintából nyert értékéhez tartozó szignifikancia szint. Ho-t elvetjük, ha a p≤α Ho-t elfogadjuk, ha a p>α Kvantitatív módszerek
Példa Kávétöltési példa: a töltőgép normális eloszlás szerint tölti a csomagokat H 0 : μ=1kg H 1 : μ≠1kg Legyen egy n=16 elemű mintánk Gazdaságstatisztika
A próbák osztályozása Mi a nullhipotézisük tárgya: Paraméterre és eloszlásra irányuló próbák Milyen jellegűek a sokaság eloszlásával szemben támasztott alkalmazási feltételek: A paraméteres próbák alkalmazási feltételei között szerepelnek a sokasági eloszlás típusára, egyes paramétereire vonatkozó elvárások A nemparaméteres próbák alkalmazása legfeljebb a sokaság eloszlásának folytonosságát követeli meg Hány és mekkora minta szükséges a végrehajtásukhoz Egy, két vagy többmintás próbák Független és páros mintás próbák Kis- és nagymintás próbák (határ n=30)
Illeszkedésvizsgálat Arról döntünk, hogy valamely valószínűségi változó F (tapasztalati) eloszlása lehet-e adott F 0 (elméleti) eloszlásfüggvénnyel jellemzett eloszlás Minták száma: egymintás Alkalmazás feltétele: nagymintás, diszkrét és folytonos eloszlásokra egyaránt Hipotézisek: H 0 : F = F 0 H 1 : F ≠ F 0 A próbafüggvény: A próbafüggvény eloszlása: χ 2 eloszlás, DF=r-l-1 Típusai: tiszta és becsléses illeszkedésvizsgálat 17
Példa – diszkrét eloszlása A Tiszán egy adott időszakban levonuló árhullámok számát vizsgálva az elmúlt 68 év során az alábbi eredményeket kapták: 30 év volt, amikor nem volt árhullám, 25 olyan év volt, amikor 1 árhullám vonult le az adott időszakban, 9 év volt, amikor 2 és 4 olyan év volt, amikor 3 vagy több árhullám következett be. Feltehető-e, hogy a folyón levonuló árhullámok száma modellezhető Poisson-eloszlással? =? nem ismerjük a mintából kell becsülnünk Poisson-eloszlás esetén: M( )= (számtani átlaggal becsülhető) Mivel az elmúlt 68 év során a kérdéses időszakban összesen 55 árhullám volt: 55/68 0,8 Gazdaságstatisztika árhullámok száma 0123 v. több gyakoriság [db]302594
Nullhipotézis és alternatív hipotézis felállítása: H 0 = az árhullámok száma =0,8 paraméterű Poisson-eloszlású H 1 : az árhullámok száma nem =0,8 paraméterű Poisson-eloszlású Mintavétel, adatok feldolgozása, kritikus érték (elfogadási és elutasítási tartomány) meghatározása Poisson eloszlás táblázat =0,8 k=0 p 0 =0, 4493 k=1 p 1 =0,3595 k=2 p 2 =0,1438 k= 3 vagy annál több 1-(p 0 + p 1 + p 2 )=0,0474 Gazdaságstatisztika Példa – diszkrét eloszlása kf(k)pkpk 0300, , , v. több40,0474 681
Példa – diszkrét eloszlás Elméleti gyakoriságok meghatározása Kritikus érték: DF=r-l-1=4-1-1=2 =5% táblázatból: 2 elm. =5,99 Gazdaságstatisztika kf(k)pkpk 0300, , , v. több40,0474 681 kf(k)pkpk F(k) 0300,449330, ,359524,45 290,14389,78 3 v. több40,04743,22 681
Példa – diszkrét eloszlás Számított érték: A számított és a kritikus érték összehasonlítása: 2 elm. =5,99 >> 2 sz =0,27 Döntés a nullhipotézisről: Mivel a számított érték az elfogadási tartományba esik –, ezért 95%-os megbízhatósági elfogadjuk a H 0 -t: a folyón levonuló árhullámok száma modellezhető =0,8 paraméterű Poisson-eloszlással. Gazdaságstatisztika kf(k)pkpk F(k) 0300,449330, ,359524,45 290,14389,78 3 v. több40,04743,22 681
Példa – folytonos eloszlás A légi közlekedésben fontos figyelemmel kísérni az utasok átlagos testsúlyát, hogy egyrészt ne terheljék túl a gépet, másrészt ne utazzon a gép fölös kapacitással. Ezért időről időre ellenőrzik, hogy a felnőtt utasok testsúlya nem tér-e el a feltételezettől. A légitársaság a terhelést a 78kg-os átlagos testsúlyra és 11kg-os szórásra tervezi. A feltételezés ellenőrzése céljából megmérték 100 véletlenszerűen kiválasztott utas súlyát, akik között 44 nő volt. A mérés eredménye látható a következő táblázatban. 5%-os szignifikancia szint mellett teszteljük, hogy az utasok testsúlya normális eloszlású változó! A mintából kiszámított jellemzők: Megoldás: Becsléses illeszkedésvizsgálat Gazdaságstatisztika Testsúly (kg) Ügyfelek száma (fő) Összesen100
Példa – folytonos eloszlás Hipotézisek: H 0 : az utasok tömege N(78,6;12,187) normális eloszlású H 1 : az utasok tömege nem N(78,6;12,187) normális eloszlású Mintavétel, adatok feldolgozása Gazdaságstatisztika Testsúly (kg) Ügyfelek száma (fő) - f i PiPi FiFi Összesen100
Példa – folytonos eloszlás A P i valószínűségi értékek meghatározása Gazdaságstatisztika Testsúly (kg) Ügyfelek száma (fő) - f i PiPi FiFi Összesen100 0, ,1746 0,305 0,2826 0,1344 0,04 1
Példa – folytonos eloszlás Elméleti gyakoriságok meghatározása Gazdaságstatisztika Testsúly (kg) Ügyfelek száma (fő) - f i PiPi FiFi , , , , , ,04 Összesen100 ~1 6, ,46 30,5 28,26 13,
Példa – folytonos eloszlás A próbafüggvény értékének meghatározása: Gazdaságstatisztika Testsúly (kg) Ügyfelek száma (fő) - f i PiPi FiFi -6070, , ,174617, ,30530, ,282628, ,134413, ,044 Összesen100~1~100 0,0911 0,122 0,074 0,0024 0, ,3038
Példa – folytonos eloszlás A kritikus érték meghatározása: DF=r-l-1=6-2-1=3 χ 2 krit =7,815 Számított és kritikus érték összevetése, döntés a nullhipotézisről: Mivel a számított érték (0,3038) kisebb, mint a kritikus érték (7,815), így a nullhipotézist 5%-os szignifikancia szinten elfogadjuk, azaz az utasok tömege N(78,6;12,187) normális eloszlású. Gazdaságstatisztika
Homogenitásvizsgálat Homogenitásvizsgálat segítségével eldönthetjük, hogy két valószínűségi változó azonos eloszlásúnak tekinthető-e. Minták száma: kétmintás Alkalmazás feltétele: nagymintás, a közösnek feltételezett eloszlásfüggvényre nincs kikötés Hipotézisek: H 0 : a vizsgált valószínűségi változók két sokaságon belüli eloszlása azonos H 1 : a vizsgált valószínűségi változók két sokaságon belüli eloszlása nem azonos A próbafüggvény: A próbafüggvény eloszlása: χ 2 eloszlás, DF=r-1 Eszköze: kontingencia táblázat
Kontingencia táblázat 29
Példa A személysérüléssel járó közúti balesetekre vonatkoznak az alábbi, mintavételből származó adatok 2003-ban. Hasonlítsuk össze a Budapesten és az ország többi részén történt balesetek idősávok szerinti eloszlását (α=1%)! Gazdaságstatisztika A baleset ideje a nap órái szerint Balesetek száma Budapesten Balesetek száma az ország többi részén Összesen100200
Példa Hipotézisek felállítása: H 0 : A balesetek idősávok szerinti eloszlása Budapesten és az ország többi részén megegyezik (H 0 : F BP = G egyéb ) H 1 : A balesetek idősávok szerinti eloszlása Budapesten és az ország többi részén nem egyezik (H 1 : F BP G egyéb ) Mintavétel, adatok feldolgozása: Kontingencia táblázat: Sor- és oszlopösszegek kiszámítása Elméleti gyakoriságok meghatározása Számított érték meghatározása Gazdaságstatisztika
Példa – kontingencia tábla A baleset ideje a nap órái szerint Balesetek száma Budapesten Balesetek száma az ország többi részén Peremgyakoriság (sorösszegek) Peremgyakoriság (oszlopösszegek) Gazdaságstatisztika ,67 19,67 17,67 23,33 25,67 27,34 39,34 35,34 46,66 51,34
Példa Kritikus érték meghatározása: DF=r-1=5-1=4 α=1% χ 2 krit =13,277 Döntés a nullhipotézisről: Mivel a számított érték (0,29656) kisebb, mint a kritikus érték (13,277), így a nullhipotézist elfogadjuk, azaz 1%-os szignifikancia szinten elfogadható, hogy a balesetek óránkénti eloszlása Budapesten és az ország többi részén megegyezik. Gazdaságstatisztika
Függetlenségvizsgálat Két minőségi ismérv valamely adott sokaságon belül független-e egymástól. A minták száma: egymintás Alkalmazás feltétele: a kontingencia táblázat méretétől függően nagy minta Hipotézisek: H 0 : a két valószínűségi változó független egymástól (nincs sztochasztikus kapcsolat) H 1 : a két valószínűségi nem független egymástól (közöttük sztochasztikus vagy függvénykapcsolat van) A próbafüggvény: A próbafüggvény eloszlása: χ 2 eloszlás, DF=(r-1)(s-1) 34
Kontingencia táblázat 35
A minőségi ismérvek között kapcsolat szorossága a minőségi ismérvek közötti asszociációval vizsgálható Cramer-féle asszociációs együttható 0 és 1 közötti értéket vesz fel. Minél közelebb esik 1-hez, annál szorosabb a kapcsolat Minőségi ismérvek asszociációja q = min(r,s) 36
Példa Egy közvéleménykutatás során egyik gazdasági témájú TV- műsorról a következő kép alakult ki a diplomások körében: Tesztelje 5%-os szignifikancia szinten a foglalkozás jellege és a TV-műsor minősítése közötti kapcsolatot! Határozzuk meg az asszociációs együtthatót is, jellemezzük a kapcsolat szorosságát! Gazdaságstatisztika A nyilatkozó foglalkozása A műsor megítélése jómegfelelőrossz közgazdász jogász egyéb diplomás
Példa Hipotézisek felállítása: H 0 : A foglalkozás jellege és a TV-műsor minősítése független egymástól. H 1 : A foglalkozás jellege és a TV-műsor minősítése nem független egymástól. Mintavétel, adatfeldolgozás: Kontingencia táblázat elkészítése: Sor-, és oszlop peremgyakoriságok meghatározása Elméleti gyakoriságok kiszámítása Számított érték meghatározása Gazdaságstatisztika
Példa Gazdaságstatisztika A nyilatkozó foglalkozása A műsor megítélésePeremgyakori ságok (sorösszegek) jómegfelelőrossz közgazdász jogász egyéb diplomás Peremgyakoriságok (oszlopösszegek)
Példa Kritikus érték meghatározása: DF=(r-1)(s-1)=2∙2=4 α=5% χ 2 krit =9,488 Döntés a nullhipotézisről: Mivel a számított érték 55,53 nagyobb, mint a kritikus érték (9,488), így a nullhipotézist elutasítjuk, a foglalkozás és a TV műsor minősítése nem független egymástól. Gazdaságstatisztika
Példa Asszociációs együttható: n=800 2 szám =55,53 r=s=3 q=3 A diploma típusa és a TV-műsor megítélése, mint két minőségi ismérv között gyenge az asszociációs kapcsolat. Gazdaságstatisztika
Gyakorló példa – Feladatgyűjtemény (23.) Egy termelési folyamatban 4 gép működik 3 műszakban. Véletlen mintát véve a hibás termékekből, gépek és műszakok szerint csoportosították azokat. Az eredményt az alábbi táblázat mutatja. Van-e kapcsolat a selejt nagysága szerint a gépek és műszakok között? (α=10%) Gazdaságstatisztika Műszak Gépek ABCD I II III
Megoldás Hipotézisek felállítása: H 0 : független egymástól a selejt nagysága szerint a gép és a műszak H 1 : nem független egymástól a selejt nagysága szerint a gép és a műszak Mintavétel, adatok feldolgozása: Kontingencia táblázat elkészítése Sor és oszlopösszegek (peremgyakoriságok számítása) Elméleti gyakoriságok számítása A próbafüggvény értékének kiszámítása Gazdaságstatisztika
Megoldás Gazdaságstatisztika Műszak Gépek Peremgyakoriság (sorösszeg) ABCD I II III Perem- gyakoriságok (oszlopösszeg) ,023 14,21 12,76 8,41 10,85 9,74 11,76 13,1 10,15 10,85 9,74 8,41 χ 2 sz =0,095+0,7976+0,455+0,0414+0,2255+0,315+0, , ,0453+0, ,4267+0,05622=2,517
Megoldás Kritikus érték meghatározása: DF=(3-1)(4-1)=2∙3=6 α=10% χ 2 krit =10,645 Döntés a nullhipotézisről: Mivel a számított érték (2,517) kisebb, mint a kritikus érték (10,645), így a nullhipotézist elfogadjuk, a selejt nagysága szerint nincs kapcsolat a gép és a műszak között. Gazdaságstatisztika
Példa – Feladatgyűjtemény (24.) A Matematika I. és II. tárgyakból a zárthelyi dolgozatokban elért pontszámok eloszlását reprezentálja az alábbi minta: Hasonlítsuk össze 10%-os szignifikancia szinten a két tantárgy pontszám szerinti eloszlását! Gazdaságstatisztika PontszámokHallgatók száma (fő) Matematika I. Matematika II Összesen110
Megoldás Hipotézisek: H 0 : a két tantárgy esetében elért pontszámok eloszlása azonos H 1 : a két tantárgy esetében elért pontszámok eloszlása nem azonos Mintavétel, adatok feldolgozása: Kontingencia táblázat elkészítése Sor és oszlopösszegek (peremgyakoriságok számítása) Elméleti gyakoriságok számítása A próbafüggvény értékének kiszámítása Gazdaságstatisztika
Megoldás Gazdaságstatisztika PontszámokHallgatók száma (fő) Perem- gyakoriság Matematika I. Matematika II Perem- gyakoriság
Megoldás Kritikus érték: DF=5-1=4 α=10% χ 2 krit =7,78 Döntés a nullhipotézisről: Mivel a számított érték (7,066) kisebb, mint a kritikus érték (7,78), így a nullhipotézist elfogadjuk, azonos a pontszámok eloszlása a két tárgy esetében. Gazdaságstatisztika
Példa – Feladatgyűjtemény (25.) Egy település rendőrkapitánya azt állítja, hogy az éjszakai betörések száma egyenletesen oszlik meg a hét napjain. Egyheti megfigyelés alapján a betörések száma az egyes napokon az alábbi volt: Ellenőrizzük 5%-os szignifikancia szinten, hogy elfogadható-e a rendőrkapitány állítása! Gazdaságstatisztika Nap Betörések száma Hétfő6 Kedd8 Szerda5 Csütörtök7 Péntek12 Szombat17 Vasárnap15 Összesen70
Megoldás Hipotézisek felállítása: H 0 : A betörések száma diszkrét egyenletes eloszlású H 1 : A betörések száma nem diszkrét egyenletes eloszlású Mintavétel, adatfeldolgozás: Elméleti gyakoriságok meghatározása Számított érték meghatározása Gazdaságstatisztika
Megoldás Nap Betörések száma (f i ) Elméleti gyakoriság (F i ) Hétfő6 Kedd8 Szerda5 Csütörtök7 Péntek12 Szombat17 Vasárnap15 Összesen70 Gazdaságstatisztika ,6 0,4 2,5 0,9 0,4 4,9 2,5 13,2
Megoldás Kritikus érték: DF=7-1=6 α=5% χ 2 krit =12,592 Döntés a nullhipotézisről: Mivel a számított érték (13,2) nagyobb, mint a kritikus érték (12,592), így a nullhipotézist elutasítjuk, a betörések száma nem diszkrét egyenletes eloszlású. Gazdaságstatisztika
Példa – Feladatgyűjtemény (21.) Egy vállalatnál az átlagos heti túlóra-kifizetéseket vizsgálták. 80 véletlenszerűen kiválasztott dolgozó adatai alapján az átlagos túlóra-kifizetés az alábbi eloszlást mutatja: Leírhatók-e a heti túlóra-kifizetések normális eloszlással? (Legyen a szignifikancia szint 10%) Gazdaságstatisztika Heti túlórabér [font] munkások száma T < T < T < T < < T3
Megoldás Illeszkedésvizsgálat Hipotézisek felállítása H 0 : normális eloszlás N(?;?) H 1 : nem normális eloszlás Normális eloszlás paramétereinek becslése: H 0 : a heti túlóra kifizetés N(3,0;2,98) eloszlású H 1 : a heti túlóra kifizetés nem N(3,0;2,98) eloszlású Gazdaságstatisztika Heti túlórabér [font] munkások száma T < T < T < T < < T3 s*=2,98
Megoldás Kritikus érték meghatározása A becsült paraméterek száma: 2 =0,10DF=r-1-2=5-3=2 2 kr =4,61 Mintavétel, adatfeldolgozás Elméleti gyakoriságok meghatározása A próbafüggvény értékének meghatározása Gazdaságstatisztika Heti túlórabér [font] munkások száma (f i ) pipi Elméleti gyakoriságok (F i ) T < T < T < T < < T3
Megoldás Gazdaságstatisztika Heti túlórabér [font] munkások száma (f i ) pipi Elméleti gyakoriságok (F i ) T < T < T < T < < T3 0, ,1155 0,3816 0,2423 0, ,114 9,24 30,53 19,384 0,7312
Megoldás Gazdaságstatisztika Heti túlórabér [font] munkások száma (f i ) pipi Elméleti gyakoriságok (F i ) T < T < T < T < < T3 0, ,1155 0,3816 0,2423 0, ,114 9,24 30,53 19,384 0,7312 0, ,26 6 1,3 Mivel a számított érték (49,622) nagyobb, mint a kritikus érték (4,91), így a nullhipotézist 10%-os szignifikancia szinten elutasítjuk, azaz a túlóra kifizetések nem írhatóak le N(3;2.98) paraméterű normális eloszlással.