Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK

Hasonló előadás


Az előadások a következő témára: "MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK"— Előadás másolata:

1 MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK
Gazdaságstatisztika MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK 2017. október 10. , október 12.

2 Sokaság: a vizsgálat tárgyát képező egységek összessége
Matematikai statisztika lényege Sokaság: a vizsgálat tárgyát képező egységek összessége Következtetés A megfigyelési eredmények a minta elemei, a megfigyelések száma a minta nagysága vagy elemszáma. A minta elemei az alapsokaság eloszlásával megegyező eloszlású valószínűségi változók. Minta: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye Mintavétel Mintavétel: a statisztikai sokaságból információszerzés céljából véletlenszerűen egyedi elemeket emelünk ki

3 Mintavételi és nem mintavételi hiba
Adatgyűjtéshez kapcsolódó hibák: pl. definíciós hibák, nemválaszolási hibák, végrehajtási hibák – NEM MINTAVÉTELI HIBA Védekezési mechanizmus: alkalmazott technikák, technológiák fejlesztése A teljes sokaság megismeréséről való lemondás ára – MINTAVÉTELI HIBA Védekezési mechanizmus: olyan mintavételi eljárásokat keresünk, hogy ez a lehető legkisebb legyen A mintavételi hiba annál kisebb, minél nagyobb a minta.

4 Statisztikai módszertan ágai
LEÍRÓ vagy DESKRIPTÍV statisztika Tömör, számszerű jellemzés: a megfigyelt adatok legjobb megértésére, bemutatására, összefoglalására törekszik. KÖVETKEZTETŐ statisztika Fő célja a mintából való következtetés, általánosítás a teljes sokaságra vonatkozóan.

5 Leíró statisztika Főbb területei: adatgyűjtés adatok ábrázolása
adatok csoportosítása, osztályozása adatokkal végzett egyszerűbb aritmetikai műveletek eredmények megjelenítése

6 Leíró statisztikai mutatószámok
Helyzetmutatók, középértékek: Az eloszlás helyzetét egyetlen, az adatokkal azonos mértékegységű számértékkel jellemzik Ingadozásmutatók: Az adathalmaz szóródása, változékonysága Az adatok egymás közötti különbségei Kitüntetett értéktől való eltérés, ingadozás valamilyen középérték körül

7 Helyzetmutatók (középértékek)
Csoportosításuk: Helyzeti középértékek: az adatok közötti elhelyezkedésüknél fogva jellemzik a vizsgált gyakorisági eloszlás helyzetét medián, módusz Számított középértékek: az adatokkal kapcsolatos számszerű összefüggésük révén jellemzik a vizsgált gyakorisági eloszlás helyzetét számtani átlag, mértani átlag, négyzetes átlag, harmonikus átlag Elvárások: Közepes helyzetűek Tipikusak Egyértelműen meghatározhatóak Könnyen értelmezhetőek

8 Medián me annak a legelső osztályköznek a sorszáma, amelyre igaz, hogy
helyzeti középérték mutató a változó azon számértéke, amelynél az összes előforduló számérték fele kisebb, fele pedig nagyobb, így a rangsorba állított sokasági számértékeket két egyenlő gyakoriságú osztályra bontja Becsülhető osztályközös gyakorisági sorból is: Előnye: Mindig egyértelműen meghatározható Érzéketlen a szélsőértékekre, és nem függ a többi ismérvértéktől sem. Hátránya: Nem használható, ha az adatsorban sok az egyforma ismérvérték Egyéb tulajdonsága: A mediánt tartalmazó osztály bal végpontja. A mediánt tartalmazó osztály hossza. ha

9 Példa – diszkrét eset 6, 8, 4, 9, 7, 3, 5 3, 4, 5, 6, 7, 8, 9 Me=6
4, 9, 7, 8, 11, 5 4, 5, 7, 8, 9, 11 Me=7+8/2=7,5 760 adat  380. és 381. adat számtani átlaga a medián Medián értéke: 3

10 Példa – folytonos eset 99 adat  50. adat a medián (49 ennél kisebb, 49 ennél nagyobb) Medián értéke: 1,132%

11 N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály:
Példa – folytonos eset Medián becslése osztályközös gyakorisági sorból: No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00% összesen N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: 0,00% ≤ x < 5,00%.

12 Módusz mo a legnagyobb gyakoriságú osztály(ok) sorszáma Hátránya:
helyzeti középérték, a tipikus ismérvérték diszkrét ismérv esetén a módusz a leggyakrabban előforduló ismérvérték, folytonos ismérv esetén a gyakorisági görbe maximumhelye. Előnye: érzéketlen a szélsőértékekre, nem függ sem az összes, sem a kiugró ismérvértékektől. Hátránya: nem mindig határozható meg egyértelműen, és nem is mindig létezik nagy bizonytalansággal becsülhető Egyéb tulajdonsága: nyers módusz, osztályköz megválasztása Becsülhető osztályközös gyakorisági sorból is: A móduszt tartalmazó osztály bal végpontja. A móduszt tartalmazó osztály hossza. mo a legnagyobb gyakoriságú osztály(ok) sorszáma

13 Példa – diszkrét eset Az elégséges érdemjegy gyakorisága a legnagyobb (280 db), így a módusz értéke 2.

14 Példa – folytonos eset A legnagyobb gyakoriságú osztály az 5. sorszámú: 0,00% ≤ x < 5,00%. No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00% összesen

15 Szorgalmi feladat 1 pont
Egy vasútvonalon egy hétig minden vonaton feljegyezték az utasok számát. Az eredményeket az alábbi táblázat tartalmazza: Számítsa ki a mediánt és a móduszt! Utasok száma Vonatok száma 𝟎≤𝑿<𝟑𝟎 6 𝟑𝟎≤𝑿<𝟔𝟎 12 𝟔𝟎≤𝑿<𝟗𝟎 28 𝟗𝟎≤𝑿<𝟏𝟐𝟎 30 𝟏𝟐𝟎≤𝑿<𝟏𝟓𝟎 16 𝟏𝟓𝟎≤𝑿≤𝟏𝟖𝟎 8

16 Medián és módusz becslése
N/2=50, így a mediánt a negyedik osztály tartalmazza, hiszen 𝒇′ 𝟒 > 𝑵 𝟐 A móduszt a negyedik osztály tartalmazza, ennek a legnagyobb a tapasztalati gyakorisága Utasok száma fi fi’ 𝟎≤𝑿<𝟑𝟎 6 𝟑𝟎≤𝑿<𝟔𝟎 12 18 𝟔𝟎≤𝑿<𝟗𝟎 28 46 𝟗𝟎≤𝑿<𝟏𝟐𝟎 30 76 𝟏𝟐𝟎≤𝑿<𝟏𝟓𝟎 16 92 𝟏𝟓𝟎≤𝑿≤𝟏𝟖𝟎 8 100 N

17 Számtani átlag számított középértékfajta
az a szám, amellyel az átlagolandó számértékeket helyettesítve azok összege változatlan marad. Számítása: Előnye: bármely alapadathalmazból egyértelműen meghatározható, minden alapadatot felhasznál Hátránya: érzékeny a szélsőértékekre  nyesett átlag Tulajdonsága: 𝑿 𝒎𝒊𝒏 ≤ 𝑿 ≤ 𝑿 𝒎𝒂𝒙 !!!

18 Számtani átlag Egyéb fontos tulajdonsága: minimális, ha

19 Példa – diszkrét eset

20 Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414%
1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

21 Példa – folytonos példa
osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00% összesen

22 Harmonikus átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok reciprokainak összege változatlan marad Alkalmazása: ha az értékek reciprokainak összege értelmezhető, leíró statisztikai viszonyszámok és indexszámítás

23 Mértani átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok szorzata változatlan marad Alkalmazása: ha az értékek szorzata értelmezhető, illetve az átlagolandó értékek exponenciálisan nőnek vagy csökkennek az időbeli fejlődés átlagos ütemének vizsgálatakor Pl. populációk egyedszáma idősor-elemzés

24 Négyzetes átlag számított középérték-mutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok négyzetösszege változatlan marad Hátránya: a kiugróan magas értékekre érzékenyen reagál Alkalmazása: ha az előjeleknek nincs jelentősége szórásszámítás

25 Kvantilisek a rangsorban olyan osztópontok (osztályhatárok), amelyek egyenlő relatív gyakoriságokat fognak közre Az Xi/k i-edik k-ad rendű kvantilis az a szám, amelynél az összes előforduló ismérvértékek i/k-ad része kisebb, (1-i/k)-ad része pedig nagyobb, ahol k≥2 és i=1, 2 ,…, k-1.

26 Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414%
1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

27 Példa – Kvantilisek becslése
No. Osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó Határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00% Összesen

28 Ingadozásmutatók (szóródásmutatók)
Csoportosításuk: Az adathalmazban szereplő értékek változékonyságát az egyes értékek egymás közötti különbségein, vagy egyes értékeknek egy kitüntetett értéktől (középérték) való eltérésein keresztül ragadja meg. Mértékegységüket tekintve: Abszolút mutatók: mértékegysége megegyezik az alapadatokéval Relatív mutatók: mértékegység nélküli [%]

29 Terjedelem Interkvantilis terjedelem
a szóródást az adathalmazban szereplő legnagyobb és legkisebb adat különbségeként jellemzi abszolút ingadozásmutató Előnye: a könnyű számítás Hátránya: értéke csak a két legszélsőségesebb ismérvértéktől függ, amelyeket sokszor a véletlen szeszélyeinek köszönhetünk. Interkvantilis terjedelem csökkenti a véletlen szélsőértékeket (legkisebb és legnagyobb értéket) alakító szerepét az adathalmaz két szélső k-adrendű kvantilisének különbsége

30 -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

31 (Korrigált) tapasztalati szórás
a szóródást az alapadatoknak egy kitüntetett értéktől (számtani átlagtól) való eltérésein keresztül méri, abszolút ingadozásmutató A szórás az egyes Xi ismérvértékek átlagtól vett di eltéréseinek négyzetes átlaga: azt mutatja, hogy az egyes értékek átlagosan mennyire térnek el a számtani átlagtól. Olyan átlagos hiba, amit akkor követünk el, ha minden alapadatot a számtani átlaggal helyettesítünk. A számtani átlag tulajdonsága szerint ez a hiba minimális.

32 Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől.
Példa – diszkrét eset Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől.

33 Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414%
1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

34 Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%]
Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00% összesen

35 Szorgalmi feladat 1 pont
Egy vasútvonalon egy hétig minden vonaton feljegyezték az utasok számát. Az eredményeket az alábbi táblázat tartalmazza: Számítsa ki a szórást illetve a korrigált tapasztalati szórást! Utasok száma Vonatok száma 𝟎≤𝑿<𝟑𝟎 6 𝟑𝟎≤𝑿<𝟔𝟎 12 𝟔𝟎≤𝑿<𝟗𝟎 28 𝟗𝟎≤𝑿<𝟏𝟐𝟎 30 𝟏𝟐𝟎≤𝑿<𝟏𝟓𝟎 16 𝟏𝟓𝟎≤𝑿≤𝟏𝟖𝟎 8

36 Szórás, korrigált tapasztalati szórás
Számtani átlag meghatározása Eltérés-négyzetösszeg meghatározása Tapasztalati szórás Korrigált tapasztalati szórás

37 Átlagos abszolút eltérés (Δ)
A szóródást az értékeknek egy kitüntetett értéktől való eltéréseire támaszkodva jellemzi abszolút ingadozásmutató Az egyes ismérvértékek és a számtani átlag különbségeinek abszolút értékeiből számított számtani átlag

38 Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól.
Példa – diszkrét eset Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól.

39 Példa – folytonos eset Az egyes hozamadatok átlagosan 5,3776%-kal térnek el a számtani átlagtól -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

40 Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00% összesen Az egyes hozamadatok átlagosan 6,213%-kal térnek el a számtani átlagtól

41 Átlagos abszolút különbség (G)
A szóródást az ismérvértékek egymás közötti különbségein keresztül méri, abszolút ingadozásmutató A minden lehetséges módon párba állított ismérvértékek különbségeinek abszolút értékéből számított számtani átlag. Kényelmetlen a számítása Alkalmazási területe: koncentráció elemzés

42 Példa Véletlenszerűen kiválasztunk 5 hallgatót, és kiszámítjuk a Gazdaságstatisztika tárgy 3 zh-ján elért eredményük átlagos abszolút különbségét. Az elért pontok: 45, 52, 76, 87, 92 45 52 76 87 92 7 31 42 47 24 35 40 11 16 5 Az 5 hallgató zh-n elért pontja átlagosan 25,8 ponttal tér el egymástól

43 Relatív szórás relatív ingadozásmutató
az ismérvértékek átlagtól vett átlagos eltérése százalékos formában kifejezve a szórás és a számtani átlag hányadosa, csak pozitív értékű alapadatok esetében számítható: minél kisebb a relatív szórás, a számtani átlag annál jobban jellemzi az alapadatokat Alkalmazása: különböző sokaságok vagy ismérvek szóródásának összehasonlítására használják

44 Köszönöm a figyelmet! Árva Gábor


Letölteni ppt "MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK"

Hasonló előadás


Google Hirdetések