2014.12.04. ÚJ ENERGIATERMELÉSI IRÁNYOK: PROBLÉMÁK, DILEMMÁK, MEGOLDÁSOK Túri László ELTE, Kémiai Intézet, Budapest, Hungary 1 Alkímia.

Slides:



Advertisements
Hasonló előadás
Változások a világ energiapiacán Dr. Szilágyi Zsombor okl. gázmérnök c. egyetemi docens Egyetemek, Főiskolák Környezetvédelmi Oktatóinak VIII. Országos.
Advertisements

1 Dekomponálás, detritivoria Def.: azon szervezetek tevékenysége, amelyek elhalt szerves anyag feldarabolását, bontását és a mineralizáció útjára irányítását.
A globális melegedést kiváltó okok Készítette: Szabados Máté.
SZTE ÁJTK Tehetségnap június 10. A rendezvény az Oktatásért Közalapítvány támogatásával, az NTP-OKA-XXII-088 pályázat keretében valósul meg.
Magyar Hidrológiai Társaság XXVII. Országos Vándorgyűlés Baja július Szekció. A CSATORNÁZÁS ÉS SZENNYVÍZTISZTÍTÁS KULCSKÉRDÉSEI NAPJAINKBAN.
A TECHNIKAILAG LEHETSÉGES KÖVETELMÉNYÉRTÉKEK FELÚJÍTÁSOKNÁL.
ENERGETIKAI CÉLÚ NÖVÉNYTERMESZTÉS Parlamenti nap, május 7. Jolánkai Márton SzIE Növénytermesztési Intézet.
Kockázat és megbízhatóság Megbízhatóság alapú kapaitás- és költségtervezés Megbízhatóság alapú kapaitás- és költségtervezés.
Beruházási és finanszírozási döntések kölcsönhatásai 1.
ENERGIA ELŐÁLLÍTÁS, TÁROLÁS ÉS FELHASZNÁLÁS ÖSSZEFÜGGÉSEI Dr. Tóth László professor emeritus, Szent István Egyetem AZ E-MOBILITÁSRÓL MÁSKÉPPEN A megújuló.
1/12 © Gács Iván A levegőtisztaság-védelem céljai és eszközei Levegőszennyezés matematikai modellezése Energia és környezet.
KÖZGAZDASÁGTANI ALAPFOGALMAK I. Előadó: Bod Péter Ákos.
ENERGIA TAKARÉKOS RENDSZERSZEMLÉLET AZ ÉPÜLETGÉPÉSZETBEN Fehér János okl. kohómérök Fűtéstechnikai szakmérnök Székesfehérvár, 2010.JAN.20.
Energetikai tanácsadás Tervezés Energetikai tanúsítás Komplex kivitelezés Megvalósítási tanulmány Projekt finanszírozás Több mint 400 db kivitelezés több.
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA VILLAMOS ENERGIA FAZEKAS ANDRÁS ISTVÁN.
Környezeti fenntarthatóság. A KÖRNYEZETI FENNTARTHATÓSÁG JELENTÉSE A HELYI GYAKORLATBAN Nevelőtestületi ülés,
Biomassza Murai Péter Tóth Barnabás Erdős Boglárka Tibold Eszter.
A tüzelőanyag cellák felhasználása mérnöki szempontból- Dr. Bánó Imre.
© Gács Iván (BME) 1/26 Energia és környezet NO x keletkezés és kibocsátás.
Napenergia-hasznosítás az épületgépészetben Konferencia és kiállítás november 9. Nagy létesítmények használati melegvíz készítő napkollektoros rendszereinek.
Az Európai Unió fogyatékosügyi stratégiája Szombathely, június 22.
Önkormányzatok épületenergetikai beruházásai pályázati forrásból!
Az új METÁR szabályozás és a biomassza piac
Biztonságos, fenntartható és tiszta energia a Duna-medencében
Palotás József elnök Felnőttképzési Szakértők Országos Egyesülete
A Levegő összetétele.
Megújuló energiaforrások használata
Rendszerek energiaellátása 1. előadás
LEHET JOBB A GYEREKEKNEK!
Energiagondok.
Atomerőművek és radioaktív hulladékok kezelése
PANNON-LNG Projekt Tanulmány LNG lehetséges hazai előállításának
Becslés gyakorlat november 3.
ELŐNYÖK – megbízható működés
Energiatermelés és környezet
Természeti erőforrások
TAB Város és a megújuló energiára alapozott oktatás Schmidt Jenő Tab Város Polgármestere 1.
Pályázati lehetőségek kisvállalkozásoknak és magánszemélyeknek
Az elektrosztatikus feltöltődés keletkezése

Megújuló energia a megújuló borsodi ártéren
A modern nagyvárosok kifejlődése, az agglomerálódási szakasz
Levegőszennyezés matematikai modellezése
Energia(termelés) és környezet BMEGEENAEK7 és BMEGEENAKM1
Baross László Mezőgazdasági Szakközépiskola és Szakiskola Mátészalka
Vörös-Gubicza Zsanett képzési referens MKIK
Környezet és Energia Operatív Program Energetikai pályázatai
Az energiamérlegünk torzulásai és javítási lehetőségei
Bevezetés Az ivóvizek minősége törvényileg szabályozott
Az energia.
A jármű hajtások különböző megoldásai, világtendenciák, előnyök, hátrányok. Dr. Bánó Imre.
Ki meri hamarabb beismerni?
Megújuló energiák Készítette: Petőfi Sándor Általános Iskola
Hárskúti Megújuló Energia Központ
A villamos installáció problémái a tűzvédelem szempontjából
Élj ökosan – generációkon át II.
Új pályainformációs eszközök - filmek
Fényforrások 3. Kisülőlámpák
MIT KELL TUDNI A NUKLEÁRISENERGIA ALKALMAZÁSÁRÓL AZ ÚJ OKJ-BEN
Halmazállapot-változások
Készítette: Koleszár Gábor
SZTE ÁJTK Tehetségnap június 10.
Ide írandó a dolgozat pontos címe
A számítógép története
Megújuló energiaforrások
SZAKKÉPZÉSI ÖNÉRTÉKELÉSI MODELL I. HELYZETFELMÉRŐ SZINT FOLYAMATA 8
Állandó és Változó Nyomású tágulási tartályok és méretezésük
A gazdasági fejlettség mérőszámai
Energia-források: Nap geotermikus nukleáris Energia.
KOHÉZIÓS POLITIKA A POLGÁROK SZOLGÁLATÁBAN
Előadás másolata:

ÚJ ENERGIATERMELÉSI IRÁNYOK: PROBLÉMÁK, DILEMMÁK, MEGOLDÁSOK Túri László ELTE, Kémiai Intézet, Budapest, Hungary 1 Alkímia Ma

Energia: miről is beszélünk??? Energia: munkavégző képesség Energia: skaláris, megmaradó mennyiség Energia = kinetikus energia + potenciális energia Potenciális energia fajtái Makroszkópikus testek energiája – mikroszkópikus testek energiája 2 Alkímia Ma

Energia: történet ἐ νέργεια: Arisztotelész Leibniz, Newton Thomas Young – 1807 Karl Friedrich Mohr, 1837 Zeitschrift für Physik 3 Alkímia Ma

Energia és termodinamika James Prescott Joule Energia – munka és hő? A termodinamika I. főtétele Δ U=q+w Mértékegység: joule, J Perpetuum mobile? elsőfajú vs. másodfajú p. m. egy új előadás? 4 Alkímia Ma

Energiatermelés és termodinamika Hőerőgépek működési elve hő → munka Termodinamikai körfolyamat Munkaközeg végez munkát Hatásfok 5 Alkímia Ma

Energiatermelés és termodinamika A Rankine-féle hőerőgépek működési elve (Keszei E.: Bevezetés a kémiai termodinamikába) 6 Alkímia Ma

Energiatermelés: korai történet Táplálkozás – létfenntartás + munkavégzés Forrása: növények által megkötött energia Energiatakarékosság Tűz Forrása: növények által megkötött energia, cellulóz Pekingi ősember: 500 ezer éve! 7 Alkímia Ma

Energiatermelés: csiszolt kőkor Állattenyésztés kezdetei: a fizikai munka kiváltása Táplálék (i.e ) Lótartás (i.e. 4000) Földművelés, szállítás, kereskedelem, háború Jelenleg is kb. 100 millió lovat szamarat, öszvért használ az emberiség munkára! 8 Alkímia Ma

Energiatermelés: ókor és középkor Szélenergia Hajózás (i.e. 9000) Malmok (i.e ) 9 Alkímia Ma Vízenergia - vízimalmok

Energiatermelés: az ipari forradalom Gőzgépek Hérón (i.e. I. század) James Watt (Newcomen) Gépek, gyárak, közlekedés forradalma 10 Alkímia Ma

Energiatermelés napjainkban: Energiahordozók, energiaforrások Primer energiahordozók Nem megújuló energiaforrások Szén, kőolaj, földgáz Hasadó anyagok Megújuló energiaforrások Szélenergia Napenergia Vízenergia Geotermikus energia Bioenergia Másodlagos energiahordozók Villamos áram Háztartási gáz Üzemanyagok 11 Alkímia Ma

Energiatermelés napjainkban Alkímia Ma 1 J = 1 Ws 3600 Ws = 1 Wh Szokásos egység: toe, Mtoe: tonne of oil equivalent, mega tonne of … 1 toe = GJ (11.63 MWh) 2011 TPES (total primary energy supply): Mtoe=5,9x10 20 J=590 exajoule Másodpercenként: 19 TW

Energiatermelés napjainkban Alkímia Ma

Energiatermelés tendenciái Alkímia Ma

Energiatermelés tendenciái Alkímia Ma

Energiafogyasztás problémái Alkímia Ma Nem megújuló források kimagasló aránya, arányának lassú csökkenése Véges készletek Masszív széndioxid kibocsátás Környezetszennyezés Globális felmelegedés Föld lakosságának dinamikus növekedése A felhasznált energia egyenetlen volta Energiaellátás jövője

Energiaforrások: szén Alkímia Ma Meglepő tények 1.Relatíve olcsó és népszerű 2.Kína előretörése 3.Tartalékok nagy mennyisége Előnyök 1.Széles földrajzi eloszlás 2.Stabil, megjósolható ár 3.Új technológiák megjelenése Hátrányok 1.Környezetszennyezés 2.Nem alkalmasak csúcsidejű egységekben 3.CCS/CCUS csökkenti a hatásfokot!

Energiaforrások: kőolaj Alkímia Ma Meglepő tények 1.Relatíve olcsó és népszerű 2.Kína előretörése 3.Tartalékok nagy mennyisége Előnyök 1.Közlekedés - vegyipar 2.Vezető kereskedelmi alapanyag 3.Rugalmas, könnyű szállíthatóság Hátrányok 1.Tartalékok végesek 2.Nagyfokú volatilitás jellemzi 3.Geopolitikai feszültségek 4.OPEC

Fosszilis energiahordozók: az emisszió problémája Alkímia Ma Emisszió csökkentése: Kiotói egyezmény, aláírás 1997, életbe lépés 2005

Fosszilis energiahordozók: környezetvédelmi megoldások Alkímia Ma Emisszió csökkentése: Kiotó CCS/CCUS : carbon capture utilisation and storage (s zéndioxid megkötés, használat és tárolás) Leválasztási elvek: Oxyfuel (kísérleti fázis) Tüzelés utáni leválasztás (aminos abszorbció) Tüzelés előtti leválasztás (kezelés szuperkritikus folyadék állapotban) Kémia: monoetanolamin abszorbens

Alternatív energiaforrások Alkímia Ma Primer energiahordozók Nem megújuló energiaforrások Palagáz Hasadó anyagok Kémiai energia (exoterm reakciók) Megújuló energiaforrások (kibővített) Napenergia Szélenergia Vízenergia Bioenergia Geotermikus energia Gravitáció energiája (árapály)

Alternatív energiaforrások: ár Alkímia Ma Villamosenergia-termelési egységköltség (levelised cost of electricity – LCOE), egysége: USD/MWh

Alternatív energiaforrások: palagáz Alkímia Ma Palagáz: palaréteg apró repedéseiben járataiban Kinyerése: hidraulikus repesztés USA energiaigénye kb. 100 évre biztosított Környezetvédelmi megfontolások Üvegházhatású gázok szivárgása Légszennyezés (benzol) Víz- és talajszennyezés Szeizmikus aktivitás

Alternatív energiaforrások: atomenergia Alkímia Ma Alapelv: Atommagok hasadása – magreakciók – fission Lehetőség? Atommagok egyesülése – fúziója - fusion

Alternatív energiaforrások: atomenergia Alkímia Ma Erőmű típusok: Könnyűvizes Nyomottvizes (PWR) Forralóvizes (BWR) Nehézvizes Grafitmoderátoros Gázhűtésű (GCR) Könnyűvízhűtésű (RBMK) Egzotikus Újgenerációs reaktorok

Atomenergia: statisztikák Alkímia Ma Előnyök 1.Jó hatásfok 2.Stabil, megjósolható ár 3.Nincs széndioxid kibocsátás Hátrányok 1.Magas tőkebefektetés 2.Közvélemény negatív képe 3.Kimerült fűtőanyagok elhelyezése

A Paksi Atomerőmű Alkímia Ma Paks: Könnyűvizes, nyomottvizes reaktor (PWR) Maghasadás: U-235 izotóp bomlása – 200 féle izotóp termék Energia: 1 bomlás = 200 MeV (3,2x J) M.o. villamosenergia-fogyasztása: GWh Ezt fedezné 19 t U-235 bomlása vagy 47 millió tonna feketekőszén égetése! Teljesítmény: 2000 MW – a hazai termelés 40 %-a Hatásfoka: 34 %, reaktoronként 500 MW villamos teljesítmény kerül kinyerésre 1485 MW hőteljesítményből

Geotermikus energia Alkímia Ma A föld termikus energiája – kőzetek radioaktív bomlása Hővezetés a magtól a felületre – Fourier törvény Történetileg: hőforrások (kőkorszak), fürdők (ókor) Kínai kőmedence i.e. 3. század

Geotermikus energia Alkímia Ma Jelentős potenciál – megújulónak tekinthető Hőfluxus-sűrűség: mW/m 2 Egy lehetséges technikai megvalósítás (ld. lenn) – nincs munkaközeg! Hőszivattyú

Biológiai energia Alkímia Ma Biomassza fogalma Forrása: fotoszintézis Felhasználása: hő és elektromos áram termelés Széndioxid terhelést nem jelent 6CO 2 +6H 2 O→C 6 H 12 O 6 +6O 2 Óriási energiatermelési potenciál

Biomassza alapanyagok Alkímia Ma

Biológiai energia: konverziós folyamatok Alkímia Ma Mechanikai átalakítás Termokémiai átalakítás Pörkölés, pirolízis … Biokémiai átalakítás Anaerob bomlás – metán Erjesztés – etanol Anaerob bomlás: Hidrolízis: cellulóz, keményítő, proteinek, lipidek lebontása → cukor, aminosav, zsírsav Acetonképző baktériumok → ecetsav, CO 2 Baktériumok: CO 2 +4H 2 →CH 4 +2H 2 O CH 3 COOH→CH 4 +CO 2

Biológiai energia: bioüzemanyagok Alkímia Ma Előállítás Előfeldolgozás (lipidek, szintézisgáz) További kezelés Termékei: bioetanol, biodízel, BtL, biometán, biohidrogén

Biológiai energia: bioetanol előállítása Alkímia Ma Forrásai Cukortartalmú növények: cukorrépa, cukornád Keményítőtartalmű növények: kukorica, búza Cellulóztartalmú növények: fa, fűfélék, szalma Lépései: Hidrolízis Erjesztés Desztilláció Töményítés Maradványanyag-kezelés Dunaföldvár, 2012

Biológiai energia felhasználása Alkímia Ma Új energiahordozóvá alakítás – drága lehet Közvetlen hőtermelés – égetés Hőtermelés és elektromos áram termelés CHP erőművek (combined heat and power) Előnyök 1.„Házi” erőforrás 2.Bizonyítottan egyszerű égetési technológiák 3.Bioüzemanyagok alternatívák lehetnek Hátrányok 1.Szállítási és feldolgozási komplikációk 2.NOx és SOx kibocsátás 3.Energia vs. víz/élelem erkölcsi dilemma

Szélenergia Alkímia Ma Első szélturbina: 1888, Charles Brush, Cleveland Nem hőerőmű – a közeg makroszkopikus, irányított áramlásának energiáját alakítja át! Egyszerű fizikai alapok Mozgási energia átalakítása elektromos energiává Áramlás teljesítménysűrűsége becsülhető a szélsebességből Mérések és modellezés segítségével jól tervezhető Nincs munkaközeg

Szélenergia Alkímia Ma Előnyök 1.Egyszerű technológia, gyors installálás 2.Nincs üzemanyag költség, nincs széndioxid kibocsátás 3.Nehezen elérhető területekre ideális megoldás Hátrányok 1.Erőforrás bizonytalansága 2.Változó energiatermelés elektromos rendszerekbe történő betáplálása 3.Lokális hátrány: zajszennyezés

Napenergia Alkímia Ma Vízenergia, szélenergia, biomassza Közvetlen napenergia felhasználás Gigantikus energiaforrás 0.1 %, 10 % hatékonysággal, 20 TW !!!! Történet: Arkhimédész lencséi Adams – Day, 1876, szelén-platina + fény → elektromos áram Kemp, 1891, vízmelegítő készülék Einstein, 1905, fotoelektromos hatás Első elektromosságot termelő napelem, 1912, Egyiptom (F. Shuman) 1954, Bell Laboratories

Napenergia hasznosítása Alkímia Ma Passzív hasznosítás Aktív hasznosítás Termikus hasznosítás - kollektorok Hőtermelés – fűtés Hőtermelés - naphőerőművek Fotoelektromos hasznosítás – napelemek - elektromos áram termelése Fotovillamos naperőművek Napelemek Egykristályos szilícium (Si) napelemek Polikristályos Si napelemek Gallium Arzenid vegyület alapú napelemek Amorf szilícium napelemek Szerves festék alapú napelemek Szerves polimerekb ő l készült napelemek

Napelemek működési elve Alkímia Ma Foton-félvezető kölcsönhatás, abszorpció Töltéshordozók létrejötte Töltéshordozók térbeli szétválása Elektron-lyuk pár keletkezés Töltéshordozók diffúziója Előnyök 1.Nagy megbízhatóság, nincs mozgó alkatrész 2.Gyors telepíthetőség 3.Nehezen megközelíthető helyeken ideális Hátrányok 1.Megszakított hasznos periódusok 2.Villamos hálózathoz történő csatlakozás nehézkessége 3.Mérgező anyagok felhasználása

Elektromos energia termelése - alternatíva Alkímia Ma Kinetikus energia – munka turbinák (szél, víz) Kémiai energia – kinetikus energia – munka hőerőgépek Kémiai energia – elektromos áram Üzemanyagcellák – fuel cells Üzemanyagcellák: Olyan folyamatosan működő galvánelemek, melyekben valamely szokásos energiahordozó (kőolaj, földgáz, szén, hidrogén, metanol) levegő általi oxidációja az áramtermelő folyamat.

Üzemanyagcellák Alkímia Ma Szükséges: az energiahordozók folyamatos betáplálása és a termékek elvezetése. az elektródfolyamatok elég nagy áramot biztosítsanak, mégis megközelítve a termodinamikai reverzibilitást. a képződő termékek ne szennyezzék az elektródokat, amik legtöbb esetben katalizátorként is működnek. Példa: Bacon-elem, mely hidrogénnel működik. A celladiagram: Anód Katód

Üzemanyagcellák Alkímia Ma Az elem működése során csak víz keletkezik! ÁBRA: Kiss L. Elektrokémia, ábra

Üzemanyagcellák és az ELTE Kémiai Intézete Alkímia Ma Elektrokémiai és Elektroanalitikai Laboratórium (EEL) HY-GO Inzelt György és csapata

A jövő kérdései, kihívásai Alkímia Ma Daniel Nocera, Chemical Reviews, 2010

A jövő kérdései, kihívásai Alkímia Ma Daniel Nocera, Chemical Reviews, : 16 TW (2011: 19 TW) 2050: ??? Hajtóerő: Lakosság növekedése (2001: 6,2 milliárd; 2050 becslés 10,5 milliárd) Lakosság növekedésével nem arányos az energiaigény Gyorsítótényező: GDP növekedése – új felhasználók + növekvő igényűek Kína, India, Afrika – jelenleg alacsony egy főre eső energia felhasználás A világ energiaigénye várhatóan drámai mértékben nő majd! Extrém óvatos becslés: 30 TW (2007-es adat alapján) Egyenlítői-Guinea egy főre eső 2007-es energiafogyasztása (USA?) Elképzelhetetlenül szigorú takarékoskodással lehetséges csak a világ gazdagabb felén + kell még újabb 16 (és még ki tudja mennyi?)TW!

A jövő kérdései, kihívásai: további becslések Alkímia Ma Daniel Nocera, Chemical Reviews, 2010 Teljes elérhető energiatartalom: Atomerőművek: 8 TW (200 erőmű építése évenként!) Geotermikus: 12 TW Biomassza: 5-7 TW Szél: 2-4 TW Árapály: 2 TW KEVÉS!!!! Felfedezés KELL! Esetleg fosszilis energiahordozók? Őket is ki kell váltani!!! Felfedezés mégis KELL? Napenergia: TW összes, 800 TW potenciálisan kinyerhető

A jövő kérdései, kihívásai: további becslések Alkímia Ma Bartholy, 2013 TW ,3-10 0,2-10 2

Napenergia újra Alkímia Ma Kihívások: a fény energiájának hasznosítása (hatásfok) az energia tárolása a tárolt energia elektromos hálózatba történő integrálása Napenergia tárolásának következményei: Nagy mennyiségű energia 24/7 Biztonságos energiaforrás Nincs üvegházhatású gáz kibocsátás Molekuláris mechanizmusok megértése Új anyagok tervezése szükséges

Takarékosság Alkímia Ma Önmagában nem elégséges! Mégis elkerülhetetlen! Példák: Hőerőművek hatásfoka (~34 %) Elektromosság szállítása és elosztása (min. 12%) Lakóházak ellátása – teljes energiaigény 40 %-a, ebből megtakarítható %!

Alkímia Ma 51

Alkímia Ma 52

Alkímia Ma 53 Égetés – hatásfok javítás? Takarékosság – world report-ból Üzemanyag cella Fotoszintézis Nukleáris er ő m ű vek – fúzió? PV cellák