Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Két változó közötti összefüggés Hipotézisvizsgálat (Statisztikai szignifikanciapróbák): A khi-négyzet Babbie, E. A társadalomtudományi kutatás gyakorlata,

Hasonló előadás


Az előadások a következő témára: "Két változó közötti összefüggés Hipotézisvizsgálat (Statisztikai szignifikanciapróbák): A khi-négyzet Babbie, E. A társadalomtudományi kutatás gyakorlata,"— Előadás másolata:

1 Két változó közötti összefüggés Hipotézisvizsgálat (Statisztikai szignifikanciapróbák): A khi-négyzet Babbie, E. A társadalomtudományi kutatás gyakorlata, Balassi Kiadó old.

2 Összefüggés két változó között a mintában Összefüggés az alapsokaságban

3 A dohányzás és az alkoholfogyasztás összefüggése az egyes táblák adatai szerint 1.tábla: Minden dohányos alkoholizál, és minden alkoholfogyasztó dohányzik. Az összefüggés determinisztikus. 2.Tábla: A dohányosok között éppen annyi az absztinens, mint az alkoholfogyasztó. A dohányzás NEM befolyásolja az alkoholfogyasztást, és fordítva. A két változó független.

4 A dohányzás és az alkoholfogyasztás összefüggése az egyes táblák adatai szerint 3. tábla: a dohányosok 60%-a iszik, 40%-a nem, az antinikotinisták 40%-a fogyaszt alkoholt, 60%-uk absztinens. Érdemes a dohánybolt-hálózatunkban szeszesital árusítási engedélyt kérni? (az engedély drága) Elég erős a 3. táblában az összefüggés, hogy érvényesnek tekintsük az alapsokaságra?

5 Mérőszám, amely az adott tábla gyakoriságainak és a „függet- lenségi tábla” gyakoriságainak eltéréseit méri A 3. tábla gyakoriságait nevezzük f m -nek, a 2. (függetlenségi)tábla gyakoriságait f e - nek. A létrehozandó mérőszám neve: khi-négyzet.

6 A khi-négyzet képlete

7 Példa1. Khi négyzet= (60-50) 2 /50+(40-50) 2 /50+(40-50) 2 /50+ +(60-50) 2 /50=4*100/50= 8

8 A khi-négyzet mint valószínűségi változó Válasszunk a „N” elemszámú alapsokaságból minden lehetséges módon egyszerű véletlen módszerrel „n” elemszámú mintákat! A többszázmillió darab minta mindegyikében vessük össze 2 változó (pl. a dohányzás és alkoholfogyasztás) együttállását jelző f m - ket a függetlenséget jelentő f e -kkel! Számoljunk rengeteg sok khi-négyzetet!

9 A khi-négyzet eloszlás ábrája (15-ös szabadságfok)

10 Mekkora konkrét (képlettel kiszámolt) khi-négyzetek adódnak a rengeteg sok „n”- elemű mintából? Tegyük fel, hogy az alapsokaságban (melyből az „n” elemű mintákat választottuk) a dohányzás és az alkoholfogyasztás függetlenek. A minták jelentős részében az f m -k nagyon közel lesznek az f e -khez. A khi-négyzetek „kicsik” lesznek.

11 Előadódhatnak olyan minták, amelyekhez „nagy” khi-négyzet-ek tartoznak? 0„kicsi” khi-négyzetek „nagy” khi-négyzetek 5 %

12 Ha egy olyan alapsokaságból, amelyben két változó független egymástól, minden lehetséges módon „n” elemű mintákat választunk véletlen módszerrel, a minták 5%-ában „nagy” khi-négyzetet kapunk. Tegyük fel, hogy az alapsokaságban a két változó független! (Null- hipotézis) Ha csak egyetlen mintát választunk, akkor mindössze 5 % annak a valószínűsége, hogy a mintában a 2 változó kapcsolatát egy „nagy” khi- négyzet jellemzi, hiszen az alapsokaságban a két változó független egymástól. Határozzuk el, hogy minden olyan esetben, ha(a 2 változó kapcsolatát jellemzendő) „nagy” khi-négyzetet számolunk ki egy mintában, akkor ebből azt a következtetést vonjuk le, hogy az alapsokaságban nem független egymástól a két változó. Elvetjük a null-hipotézist. Azt mondjuk, hogy a két változó az alapsokaságban (is) összefügg egymással. MIT KOCKÁZTATUNK? 5% annak a valószínűsége, hogy tévedünk. Ez az 5% annak a hibának (elsőfajú hiba) a valószínűsége, hogy egy igaz hipotézist (null-hipotézis) hamisnak ítélünk.

13 Null-hipotézis: az alapsokaságban a 2 változó független Mire következtetünk, ha egy adott mintában 2 változó kapcsolatát „kicsi” khi-négyzet jellemzi? Ebből arra következtetünk, hogy az alapsokaságban független egymástól a két változó. Megtartjuk a null-hipotézist (Miért nem nulla ilyenkor a khi-négyzet értéke?) Mit kockáztatunk? Egy hamis hipotézist tartottunk meg (másodfajú hiba). Mekkora lehet a másodfajú hiba elkövetésének valószínűsége?

14 Mikor „nagy” és mikor ”kicsi” a khi- négyzet értéke? Szabadságfok: (oszlopok száma -1)*(sorok száma – 1) Khi-négyzet-eloszlás táblázata Oszlopokban: szignifikanciák, Sorokban: szabadságfokok Táblázatban: khi-négyzet „küszöbérték”

15 15 A dohányzás----alkoholfogyasztás egy 2*2-es táblában Számított khi-négyzet értéke:8 A táblázat szabadságfoka: (2-1)*(2-1)=1 A khi-négyzet küszöbértéke (5 %-os szignifikanciánál):3,84

16 A számított khi-négyzet és a khi-négyzet küszöbértéke 0„kicsi” khi-négyzetek „nagy” khi-négyzetek 3,84

17 Példa 2.

18 Khi-négyzet= (80-126) 2 /126+(54-87) 2 /87+ +( ) 2 /148+(78-89) 2 /89+(80-61) 2 /61+ +(96-104) 2 /104+(132-94) 2 /94+(78-65) 2 /65+ +(60-111) 2 /111+(60-40) 2 /40+(28-28) 2 /28+ +(27-47) 2 /47=138,47 Egy 4*3-as kereszttáblához tartozó khi-négyzet szabadságfoka: 3*2=6 A khi-négyzet küszöbértéke:12,59 Következtetés?

19 Mitől függ a (számított) khi-négyzet értéke?

20 Ha kétszer akkora mintát veszünk:

21 A 200 fős és a 400 fős minta számított khi-négyzete Következtetés? 03,84 2,00 A 200 fős minta számított khi- négyzete 4,00 A 400 fős minta számított khi- négyzete

22 A khi-négyzet elemszámérzékeny (2-szer akkora mintában 2-szeresére nő a számított khi-négyzet értéke, pedig a kereszttábla gyakoriságai azonos „szerkezetűek” Hipotézisvizsgálat 1. Null-hipotézis (az alapsokaságban a 2 változó függyetlen) 2. Szignifikancia „választás”, elsőfajú hiba elkövetésének valószínűsége (5%) 3. A kereszttábla szabadságfoka 4. A khi-négyzet küszöbértékének „kikeresése” 5. A függetlenségi tábla gyakoriságainak kiszámítása 6. A khi-négyzet kiszámítása 5. Következtetés: a számított khi-négyzet és a khi-négyzet küszöbértékének összevetése: ha a számított khi-négyzet nagyobb a küszöbértéknél, a nullhipotézist elvetjük, kisebb a küszöbértéknél, a nullhipotézist megtartjuk.


Letölteni ppt "Két változó közötti összefüggés Hipotézisvizsgálat (Statisztikai szignifikanciapróbák): A khi-négyzet Babbie, E. A társadalomtudományi kutatás gyakorlata,"

Hasonló előadás


Google Hirdetések