Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Matematika a művészeti ágakban Csoporttagok: Birta Bernadett Boldizsár Renáta Boros Zoltán Haraklányi Erzsébet Katona Árpád.

Hasonló előadás


Az előadások a következő témára: "Matematika a művészeti ágakban Csoporttagok: Birta Bernadett Boldizsár Renáta Boros Zoltán Haraklányi Erzsébet Katona Árpád."— Előadás másolata:

1 Matematika a művészeti ágakban Csoporttagok: Birta Bernadett Boldizsár Renáta Boros Zoltán Haraklányi Erzsébet Katona Árpád

2 Művészek találkozása a matematikai modellekkel Két nagyon különböző művészeti mozgalom: a konstruktivizmus és a szürrealizmus a matematikai modelleket nagyjából ugyanakkor fedezte fel a maga számára. Barbara Hepworth: Pelagos (konstruktivista)Max Ernst: Orsó cikloid (szürrelista)

3 Naum Gabo A konstruktivista N AUM G ABO (1890—1977) az 1930-as évek elején a matematikai modellek hatására kezdett hasonló alakzatokat rajzolni, és minden bizonnyal az első konstruktivistaként. Antoine Pevsner A NTOINE P EVSNER ( ), N UAM G ABO testvére volt. Festőként kezdte karrierjét, majd G ABO szobrászatra ösztönözte. P EVSNER tagadta, hogy a matematikai modellek közvetlen hatással lennének a munkáira, ám valószínű, hogy a Síkba fejthető felület sorozatát az egyenessel leírható felületű modellek ihlették.

4 Naum Gabo alkotásai Fej II. (Head № 2) Konstrukció Egy kőfaragvány vázlata (1933). Vázlat egy modellhez, amelynek egyenessel leírható felülete van.

5 Antoine Pevsner alkotásai Síkba fejthető felület Munkája a Venezuelai Egyetemen Negyedik dimenzió

6 Man Ray 1936-ban, M AN R AY (1890—1976), a szürrealista fotó- és festőművész egy sorozat fényképet készített a párizsi Poincaré Intézet (Institut Henri Poincaré, Paris) matematikai modelleket bemutató tárlatáról. M AN R AY fotográfiái, csakúgy mint a Matematikai modellek sorozaton alapuló festménysorozata jelentősen előtérbe helyezte a matematikai modelleket.

7 Man Ray fotói

8 Man Ray festményei King Lear Aline at Valcoure From Les Six Masques Voyants

9 XIX. századi, ma is elő festők Maurer Dóra (1937-) 1970 utáni műveinek nagy része a következö matematikai fogalmak köré csoportosítható: – -Szám, számosság, megszámlálhatóság. – -Mérés, mérték, illetve két mennyiség egymással való összehasonlításából származó fogalom: arány – -Több szám vagy „dolog” egymás mellé sorolásából létrejövö sorozatok, illetve ezen müveletekkel történö bövítéséből – Sík, tér. Hepp Edit (1947-) Hamburger Péter matematikusprofesszor neje férjével közös munkái a matematika és a muvészet kapcsolatából születtek Festményei egészen légiesek, valahol mégis felismerhetö bennük a grafikonok és hullámgörbék következetessége

10 Maurer Dóra festményeiHepp Edit festményei Hemiszférikus hármas ikrek Gemini 4/B

11 Albrecht Dürer bűvös négyzete Az 1514-ben készült Melankólia című rézmetszetén az embert fölfelé emelő szárnyakkal ábrázolja, kezében körzővel, a tudomány eszközével. Körülette lévő szerszámok az ember alkotó tevékenységére utalnak. A rézmetszet jobb felső sarkában található híressé vált bűvös négyzete a festő matematika iránti vonzalmát és tehetségét bizonyítja. A négyzet minden sorában, oszlopában és átlójában szereplő számok összege 34. Az alsó sor két középső száma 15 és 14 a metszet elkészülésének évszámát adja. Ezen kép alapján jogos az a feltételezés, hogy Dürer tervezte számjegyeink mai alakját. Mindenestre tény, hogy minden számjegy előfordul benne.

12

13 Az isteni arány Leonardo da Vinci a festészetben az ember ábrázolását tekintette fő feladatának. Ehhez az i.e. első században élt római tudós, Vitruvius megfigyeléseire támaszkodott. „Az emberi test középpontja természetesen a köldök. Ha egy kinyújtott karral és lábbal háton fekvő ember köré egy körzővel a köldökét középpontnak véve kört húzunk, akkor a kéz- és lábujjai érinteni fogják az így megadott kört. […] Ha pedig megmérjük a távolságot a talptól a fejtetőig, majd ezt összevetjük a kinyújtott karok hosszával, úgy találjuk, hogy a szélesség megegyezik a magassággal.” A tétel igazolását Leonardo egyik legismertebb vázlatán láthatjuk. A Vitruviánus ember egy idealizált férfialakot ábrázol, az emberek nagy részére természetesen nem teljesülnek a fenti arányok.

14

15 ZENE Fourier-elemzésnek nevezett matematikai tételből következik, hogy minden periodikus rezgés megfelelő számú tiszta, szinuszos részrezgés eredőjeként is felfogható. Ezeknek a részrezgéseknek a körfrekvenciái az előforduló legkisebb körfrekvencia egész számú többszörösei lesznek. ahol : *n = 1, 2, 3, …. *y(t) az elemzett periodikus rezgés pillanatbeli kitérése *α n az egyes részrezgések csúcsértéke, amplitúdója *ω 0 = 2π x f 0, ahol f 0 az elemzett periodikus rezgés alapfrekvenciája *φ n az egyes részrezgések kezdeti fázisszöge.

16 NÉPTÁNC Programozási algoritmusok néptáncban Buborékrendezés A buborékrendezés egy egyszerű algoritmus, amellyel egy véges (nem feltétlenül numerikus) sorozat vagy egy tömb elemei sorba rendezhetők [(n-1)n]/2 összehasonlítás elvégzésével, ahol n a sorozat elemeinek számát jelenti. Mivel az algoritmus nem túl hatékony, a gyakorlatban szinte egyáltalán nem, inkább csak az algoritmuselmélet oktatása során használják. feature=player_embedded&v=lyZQPj UT5B4

17 Programozási algoritmusok néptáncban Shell-sort (Kagylórendezés) A shellsort előnye hogy jóval gyorsabb mint a többi egyszerű rendszerezési algoritmus. A shellsort alapelve hogy az adatokat mint egy két dimenziós mezőt tekinti és ebböl adódóan a rendszerezés először tömbönként történik. Ezt a folyamatot addig folytatjuk amig már csak egy tömb marad meg. Ez után a többi rendszerezés Bubblesorttal történik. feature=player_embedded&v= CmPA7zE8mx0 NÉPTÁNC

18 Könyvészet k/matekmuveszet.html k/matekmuveszet.html o_ember/ o_ember/ k/kiraly_maurer.html k/kiraly_maurer.html rer_buvos_negyzete.htm rer_buvos_negyzete.htm Képek:


Letölteni ppt "Matematika a művészeti ágakban Csoporttagok: Birta Bernadett Boldizsár Renáta Boros Zoltán Haraklányi Erzsébet Katona Árpád."

Hasonló előadás


Google Hirdetések