Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Hálótervezés Készítette: Kosztyán Zsolt Tibor 16.16.

Hasonló előadás


Az előadások a következő témára: "Hálótervezés Készítette: Kosztyán Zsolt Tibor 16.16."— Előadás másolata:

1 Hálótervezés Készítette: Kosztyán Zsolt Tibor

2 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése) •Definíció:Egy tevékenység tényleges kezdése, és a legkorábbi kezdés közötti időt felhasznált tartalékidőnek nevezzük. •Megjegyzés:A felhasznált tartalékidő mindig egy nemnegatív egész vagy valós szám, hiszen a tevékenységeket a legkorábbi kezdési idejüknél korábbra nem lehet beütemezni. •Definíció:Legkésőbbi befejezés és a tevékenység tényleges befejezése közötti időt rendelkezésre álló tartalékidőnek nevezzük.

3 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése) •Definíció:Egy erőforrás-allokációs probléma megengedett megoldásának nevezünk, egy olyan ütemtervet, amelynél a projekt végrehajtása során minden időpillanatban az összes erőforrásigény nem haladja meg az erőforráskorlátot. •Definíció:Az erőforrás-allokáció (egy adott célfüggvényre) optimális megoldásának nevezünk egy olyan megengedett megoldást, ahol a célfüggvény a lehető legkisebb (legnagyobb). •Megjegyzés:Ilyen célfüggvény lehet pl. a megengedett megoldásokban elmozgatott tevékenységek felhasznált tartalékidőinek minimuma, vagy a tevékenységek felhasznált tartalékidőinek összegének minimuma stb.

4 Matematikai felírás x (i,j)  w (i,j) -z (i,j), ahol x (i,j), w (i,j), z (i,j)  R o + (1)  (z (i,j) + x (i,j) )  c, ahol c  R o +,  R o +  {r 1,r 2,..,r n }, r 1,r 2,..,r n  R o +,n  Z + (2)  (i,j)  P(3)  (i,j)  Q, ahol Q  (P)\ ,  (k,l)  A esetén ha (i,j) tevékenység rákövetkezési relációban áll (k,l)-l, akkor z (i,j) +x (i,j)  z (k,l) +d (k,l) (4)

5 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése) 1.Csak ott optimalizálunk, ahol x(i,j)>0, vagyis amely tevékenység kezdeti idejét megváltoztattuk. 2.Felhasználjuk, hogy  függvény minden olyan helyen, ahol nincs törés konstans, bármelyik tevékenységet is változtatva a módszer a megengedettségen nem változtat, ha figyelembe vesszük a rákövetkezési relációkat is. 3.A 2. pont szerint tehát egy „bizonyos ideig” a (2), és (5) feltétel elhagyható. Ekkor viszont egy lineáris problémához (LP) jutunk. Tehát arra az intervallumra a választott kiválasztást alkalmazva a megengedettség nem sérül.

6 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése) •Definíció:Egy (i,j) tevékenységre vonatkozó töréspont értéke megmutatja, hogy az (i,j) tevékenységet elvéve az összes erőforrásra vonatkozó erőforrásigény függvény a tevékenység kezdése pillanatában hogyan változik. Ha az erőforrásigény csökken (nő) a tevékenység kezdetekor, akkor a töréspont ebben a pillanatban pozitív (negatív).

7 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése) Legyenek adottak azok a tevékenységek (Q), amelyek felhasznált tartalék idejét (együttesen) csökkenteni szeretnénk. Ekkor legyen ti az az idő, amennyi ideig valamennyi csökkenthető úgy, hogy törésponthoz nem érnének, illetve ha elérik, akkor ez a töréspont negatív. Másrészt a rákövetkezési relációk meghatározzák, hogy az elmozgatandó tevékenységek közül mennyivel mozgathatjuk el őket, hogy a rákövetkezési reláció ne sérüljön. Ezt az időt pedig úgy számíthatjuk ki, hogyha egy tevékenységnek van megelőző tevékenysége, akkor a megelőző tevékenység befejezéséből kivonjuk a követő tevékenység kezdési időpontját.

8 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése) Továbbá legyen Q  P azon tevékenység halmaza, amelyeket az adott lépésben minimalizálni szeretnénk. Ekkor az az idő, ameddig a lineáris modellt használhatjuk (legyen t l ) az alábbi módon számítható: t l :=min(t s(i,j) ; t i(i,j) ), ahol  (i,j)  Q(5) Ekkor x (i,j) :=x (i,j) -t l, ahol (i,j)  Q.

9

10 Optimális erőforrás-tervezés (megengedett megoldásból optimális megoldás keresése)

11

12

13 •Csak azokat a tevékenységeket kell optimalizálni, amelyeket elmozdítottunk annak érdekében, hogy egy optimális megoldást kapjunk (ezeket a tevékenységeket fehérrel jelöltem). Ugyanis a többi esetben a tevékenységeket nem mozgattuk el a megengedett megoldás keresésénél. Vagy azért, mert a kritikus úton helyezkednek el (zölddel jelöltem), vagy az erőforráskorlátot nem sértették meg (sárgával jelöltem)

14 Optimális erőforrás-tervezés (Erőforrás-allokáció időben változó korlátozás esetén) •A gyakorlatban sokszor előfordul, hogy a rendelkezésünkre álló erőforráskorlát függ az időtől. (Pl. egy szálloda építésekor ünnepnapokon előfordulhat, hogy rendelkezésünkre jóval kevesebb munkaerő áll, mint más napokon.) •Az előző pontban tárgyalt erőforrás-allokáció kizárólag konstans korlátozás esetén működött. Látni fogjuk, ha az erőforráskorlát szakaszonként konstans függvény, és a függvénynek csak véges sok helyen van szakadása, akkor egyszerűen visszavezethető az eredeti problémára.

15 Optimális erőforrás-tervezés (Erőforrás-allokáció időben változó korlátozás esetén) Legyen adott egy  függvény, mely az erőforráskorlátot adja meg minden pontban. Ennek a függvénynek véges sok helyen legyen csak szakadása, valamint e pontok kivételével legyen (szakaszonként) konstans függvény. Ilyen erőforráskorlátok mellett keressünk először egy megengedett megoldást. Mint azt látni fogjuk, első lépésként megpróbálunk egy olyan erőforráskorlátot keresni, amely konstans. Legyen ez a szám a  függvény maximuma. Azokon a szakaszokon, ahol  függvény értéke kisebb ennél, ott vezessünk be olyan látszat erőforrás igényt, amelyeket semmiképpen sem mozgathatunk el a megengedett megoldáskeresésben.

16 Optimális erőforrás-tervezés (Erőforrás-allokáció időben változó korlátozás esetén) •Rendezzük ezeket a látszat erőforrás- igényeket az erőforrás-terhelési diagram aljára. Ha létezik megengedett megoldás, akkor az algoritmusom megtalálja az optimális megoldást, hiszen a látszat erőforrás-igényeket nem mozgattuk el az ERALL algoritmus során, így ezeket nem is optimalizáljuk, a látszat erőforrás- igényeket tevékenységekként kezelve tehát az algoritmus semmit sem változik.

17

18

19 16.16.


Letölteni ppt "Hálótervezés Készítette: Kosztyán Zsolt Tibor 16.16."

Hasonló előadás


Google Hirdetések