Regionális elemzések módszerei Tematika: területi statisztikai elemzési módszerek Excelben Adatbázis kezelés, területi egyenlőtlenségi mutatók, földrajzi összefüggés elemzések, grafikus ábrázolási módszerek Számonkérés: félévvégi zh (100 pont) Számítógépes gyakorlati feladatok a tanult elemzési módszerek segítségével 1
Felhasználható irodalom A felkészüléshez elsősorban a gyakorló feladatsor és az órai jegyzet ajánlott Gyakorló feladatsor letölthető lesz: http://jeney.web.elte.hu Nemes Nagy, J. (szerk.) 2005: Regionális elemzési módszerek. – Regionális Tudományi Tanulmányok, 11. – Budapest: ELTE Regionális Földrajzi Tanszék – MTA–ELTE Regionális Tudományi Kutatócsoport, 284 p. Letölthető: http://geogr.elte.hu/old/REF/Kiadvanyok/REF_11_PDF/RTT-11-tartalom.htm#RTT-11 2
Regionális elemzések módszerei dr. Jeney László egyetemi adjunktus jeney@caesar.elte.hu Regionális elemzések módszerei II. Gazdasági és vidékfejlesztési agrármérnök alapszak (BSc) 2014/2015, II. félév BCE Gazdaságföldrajz és Jövőkutatás Tanszék
Adattípusok
Adatsorok 2 fő típusa: nem fajlagos és fajlagos mutatók Nem fajlagos (abszolút) mutatók Pl. népességszám, GDP, személygépkocsik száma, terület, városlakók száma Jelölése: xi azaz x abszolút mutató értéke adott „i” régióban Fajlagos mutatók (relatív vagy származtatott mutatók) Pl. egy főre jutó GDP, ezer lakosra jutó személygépkocsik, népsűrűség, városlakók aránya Lehet százalékos részesedés is: pl. városlakók aránya Jelölése: yi azaz y fajlagos mutató értéke adott „i” régióban Általában 2 nem fajlagos mutató hányadosa, pl. GDP és népesség (ritkán 2 fajlagos mutató hányadosa, pl. megyei GDP/fő az országos átlagos GDP/fő %-ában) Esetükben súlyozni kell (pl. súlyozott átlag, súlyozott szórás) A súly a fajlagos mutató képletének nevezőjében van, jelölése fi azaz f súly értéke adott „i” régióban Súly gyakran népességszám, de nem mindig 5
Nem fajlagos – fajlagos mutatók valamint a súly közötti átszámítások Ha a nem fajlagos mutató (GDP) és a súly (népességszám) ismert A fajlagos mutató (GDP/fő): a nem fajlagos mutató és a súly hányadosa Ha a nem fajlagos (GDP) és a fajlagos mutató ismert (GDP/fő) A súly (népesség): a nem fajlagos és a fajlagos mutató hányadosa Ha a fajlagos mutató (GDP/fő) és a súly (népesség) ismert Nem fajlagos mutató (GDP): a fajlagos mutató és a súly szorzata 6
Adatsorok jellegadó értékei
Adatsorok jellegadó értékei Középértékek Számtani átlag / súlyozott számtani átlag Mértani átlag Helyzeti középértékek (módusz, medián) Szélső értékek Maximum Minimum Adatsor terjedelme és szórása (átvezet a területi egyenlőtlenségi mutatók felé) Terjedelem-típusú mutatók Szórás-típusú mutatók
Középértékek: átlagok Számtani átlag Az eredeti számok helyébe helyettesítve azok összege változatlan n db adat (xi) Excel fx= ÁTLAG() Súlyozott számtani átlag n db fajlagos adat (yi) Súly (fi): a fajlagos mutató nevezőjében szereplő adat Mértani átlag Az eredeti számok helyébe helyettesítve azok szorzata változatlan
Helyzeti középértékek Medián Az az érték, aminél kisebb és nagyobb adatok száma egyenlő (felező pont) Extrém adatokat tartalmazó adatsorok esetében érdemes használni Kvantilisek: kvartilis (negyedelő), kvintilis (ötödölő), decilis (tizedelő), percentilis (századoló) Medián/átlag: egyenlőtlenségi mutató (minél kisebb, annál nagyobb az egyenlőtlenség) Excel fx= MEDIÁN() Módusz („divatos érték”) A legtöbbször előforduló érték Lehet többmóduszú (többcsúcsú) adatsor is Excel fx= MÓDUSZ()
A szélső értékek és a terjedelem típusú egyenlőtlenségi mutatók Maximum Az adatsor legnagyobb értéke (xmax) Excel fx= MAX() Minimum Az adatsor legkisebb értéke (xmin) Excel fx= MIN() Alapja a terjedelem típusú egyenlőtlenségi mutatóknak Range (szóródás terjedelme) Range-arány (adatsor terjedelme) Relatív range
Súlyozatlan relatív terjedelem kiszámításának lépései (abszolút mutatóknál) Ki kell számítani az adatsor maximumát (függvényvarázsló: max) Ki kell számítani az adatsor minimumát (függvényvarázsló: min) Ki kell vonni a maximális értékből a minimálist (ez a terjedelem) Ki kell számítani az adatsor (sima) átlagát (függvényvarázsló: átlag) El kell osztani a terjedelmet az átlaggal
Súlyozatlan relatív terjedelem kiszámítása Excelben 1 xa xb 2 1. régió 24 10 3 2. régió 4 3. régió 5 4. régió 12 6 maximum =MAX(B2:B5) =MAX(C2:C5) 7 minimum =MIN(B2:B5) =MIN(C2:C5) 8 terjedelem 24 =B6-B7 0 =C6-C7 9 átlag 10 =ÁTLAG(B2:B5) 10 =ÁTLAG(C2:C5) relatív terjedelem 2,4 =B8/B9 0 =C8/C9
Súlyozott relatív terjedelem kiszámításának lépései (fajlagos mutatóknál) Ki kell számítani az adatsor maximumát (függvényvarázsló: max) Ki kell számítani az adatsor minimumát (függvényvarázsló: min) Ki kell vonni a maximális értékből a minimálist (ez a terjedelem) Ki kell számítani az adatsor súlyozott átlagát El kell osztani a terjedelmet a súlyozott átlaggal
Súlyozott relatív terjedelem kiszámítása Excelben F G 1 ya fa xa yb fb Xb 2 1. régió 24 =B2*C2 10 =E2*F2 3 2. régió 4 3,5 14 35 3. régió 4,5 45 5 4. régió 12 6 összeg 50 100 7 max. 24 =MAX(B2:B5) 10 =MAX(E2:E5) 8 min. 0 =MIN(B2:B5) 10 =MIN(E2:E5) 9 terj. 24 =B6-B7 0 =E6-E7 s. átlag 5 =D6/C6 10 =G6/F6 11 rel terj 4,8 =B9/B10 0 =E9/E10
A szórás típusú egyenlőtlenségi mutatók
Szórás-típusú egyenlőtlenségi mutatók Nem fajlagos (abszolút) mutatók (xi): (súlyozatlan) szórás Fajlagos mutatók (yi): súlyozott szórás A valódi egyenlőtlenségeket a relatív szórással mérhetjük Nem fajlagos: (súlyozatlan) relatív szórás (szórás az átlag %-ában) Fajlagos mutatók: súlyozott relatív szórás (súlyozott szórás a súlyozott átlag %-ában) 17
(Súlyozatlan) szórás: nem fajlagos mutatók esetében Adatsorok egyes értékeinek (xi) az átlagtól való négyzetes eltérésének az átlaga Képlete Xi = abszolút mutató i régióban n = elemszám Kiszámítása Excel: fx= SZÓRÁSP() ( és nem SZÓRÁS) Angol nyelvű Excel fx= STDEVP() Értékkészlete: 0 ≤ σ ≤ ∞ Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: mint az eredeti értékek (Xi) mértékegysége 18
(Súlyozatlan) relatív szórás: nem fajlagos mutatók esetében A valódi egyenlőtlenségeket a relatív szórással mérhetjük Relatív szórás: abszolút mutatók esetében Képlete: σ = Xi adatsor szórása x = Xi adatsor átlaga Kiszámítása a szórás értékeket elosztjuk az átlaggal és megszorozzuk 100-zal (a szórás értékeit az átlag százalékában fejezzük ki) Értékkészlete: 0 ≤ v ≤ ∞ Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: % 19
Súlyozott szórás: fajlagos mutatók esetében Fajlagos mutatók (yi) esetében Adatsorok egyes értékeinek (yi) az átlagtól való négyzetes eltérésének az átlaga Képlete yi = fajlagos mutató i régióban fi = súly (fajlagos mutató nevezője) Értékkészlete: 0 ≤ σ ≤ ∞ Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: mint az eredeti értékek (yi) mértékegysége 20
Súlyozott szórás kiszámításának lépései Kiszámítom a fajlagos mutató súlyozott átlagát Minden térség esetében kiszámítom a vizsgált fajlagos mutató értékeinek eltérését a súlyozott átlagtól (Excel $) Minden térség esetében a kapott különbségeket négyzetre emelem (Excel jobb oldali Alt+3 együtt, majd 2 = ^2) Minden térség esetében a kapott értékeket megszorzom a térséghez tartozó súllyal 2–4. lépések egy oszlopban is megoldhatók Az így kapott szorzatokat összegzem Ezt az összeget elosztom a súlyok összegével Ennek a hányadosnak a négyzetgyökét veszem (^0,5) 21
Súlyozott relatív szórás: fajlagos mutatók esetében A valódi egyenlőtlenségeket a relatív szórással mérhetjük Fajlagos mutatók esetében: súlyozott relatív szórással Képlete: σ = yi adatsor súlyozott szórása y = yi adatsor súlyozott átlaga Kiszámítása A súlyozott szórás értékeket elosztjuk a súlyozott átlaggal és megszorozzuk 100-zal (a súlyozott szórás értékeit a súlyozott átlag százalékában fejezzük ki) Értékkészlete: 0 ≤ v ≤ ∞ Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: % 22
Súlyozott relatív szórás kiszámítása Excelben D E F G 1 y f x átl elt négyzet súlyozás 2 1. régió 24 24 =B2*C2 19 =B2-B$7 361 =E2^2 361 =F2*C2 3 2. régió 4 3,5 14 –1 3. régió 4,5 –5 25 112,5 5 4. régió 12 7 49 6 összeg 10 50 =SZUM(D2:D5) 526 =SZUM(G2:G5) s. átlag 5 =D6/C6 52,6 =G6/C6 8 s. szórás 7,25 =G7^0,5 9 s. relatív szórás 145,05 =B8/B7*100 23
A területi koncentráció mérése: Hirschman–Herfindahl index
Területi egyenlőtlenségek mérésére szolgáló statisztikai eszközök Területi egyenlőtlenségi indexek, leggyakrabban használtak: A területi polarizáltság mérőszámai Relatív terjedelem/Relatív range (Q) Duál mutató/Éltető–Frigyes index (D) Szórás-típusú területi egyenlőtlenségi indexek Súlyozott relatív szórás (V) Területi eloszlást mérő egyenlőtlenségi indexek Hirschman–Herfindahl index (K) Hoover-index/Krugman-index (H) Területi egyenlőtlenségek összetettebb mérési módszerei Gini együttható (G) Távolságfüggvények Korrelációs mérőszámok 25
Hirschman–Herfindahl index Egy jelenség földrajzi koncentrációjának mérésére használt mutatószám Csak összegezhető (nem fajlagos) mutatóra számítható Képlete Xi = nem fajlagos mutató i régióban Σxi = nem fajlagos mutató a teljes régióban Értékkészlete: 1/n ≤ K ≤ 1 Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség Előfordulhat, hogy alacsonyabb területi szinten csökken az értéke Mértékegysége: nincs 26
Hirschman–Herfindahl index kiszámításának lépései Összegezzük a vizsgált adatsort Minden térség esetében elosztom az adott térség értékét az előbb kiszámított összeggel (Excel $) Minden térség esetében a kapott hányadosokat négyzetre emelem (Excel jobb oldali Alt+3 együtt, majd 2 = ^2) 2–3. lépések egy oszlopban is megoldhatók Az így kapott értékeket összegzem 27
Hirschman–Herfindahl index kiszámítása Excelben 1 xi hányados négyzet 2 1. régió 8 0,4 =B2/B$6 0,16 =C2^2 3 2. régió 4 0,2 0,04 3. régió 6 0,3 0,09 5 4. régió 0,1 0,01 összesen 20 =SZUM(B2:B5) 7 Hirshman–Herfindahl i. 0,3 =SZUM(D2:D5) 28
Hirschman–Herfindahl index elméleti maximuma B C D 1 xi hányados négyzet 2 1. régió 0 =B2/B$6 0 =C2^2 3 2. régió 4 3. régió 20 5 4. régió 6 összesen 20 =SZUM(B2:B5) 7 Hirshman–Herfindahl i. 1 =SZUM(D2:D5) 29
Hirschman–Herfindahl index elméleti minimuma (4 elem esetén) B C D 1 xi hányados négyzet 2 1. régió 5 0,25 =B2/B$6 0,0625 =C2^2 3 2. régió 0,25 0,0625 4 3. régió 4. régió 6 összesen 20 =SZUM(B2:B5) 7 Hirshman–Herfindahl i. 0,25 =SZUM(D2:D5) 30
Területi eloszlások összevetése: Hoover index
Hoover index Egyik legelterjedtebb, legáltalánosabban használt területi egyenlőtlenségi index Két mennyiségi ismérv területi megoszlásának eltérését méri Az egyik ismérv, társadalmi-gazdasági jelenség mennyiségének hány százalékát kell a területi egységek között átcsoportosítani ahhoz, hogy területi megoszlása a másik jellemzőével azonos legyen Területi kutatásokban leggyakrabban a népesség területi eloszlásával vetjük össze más társadalmi-gazdasági ismérvével 1941: E. M. Hoover, amerikai agrárközgazdász Használja a földrajz, szociológia, közgazdaságtan, ökológia is 32
Hoover index Két nem fajlagos mutató területi megoszlása közötti eltérést mérhetjük vele Egy fajlagos mutató számlálója és nevezője között is lehet Képlete: xi = i régió részesedése x nem fajlagos mutatóból yi = i régió részesedése y nem fajlagos mutatóból xi és yi: két megoszlási viszonyszám, melyekre fennállnak az alábbi összefüggések Σxi = 100 Σyi = 100 A mutató szimmetrikus, a két összevetett megoszlás (xi és yi) szerepe, sorrendje felcserélhető Értékkészlete: 0 ≤ H ≤ 100 Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: % 33
Hoover index kiszámításának lépései Mindkét nem fajlagos mutató adatsorának értékeit összegezzük Minden térség esetében kiszámítjuk az adott térség százalékos részesedését az összes mennyiségből (mindkét mutató esetében) Minden térség esetében kivonjuk az egyik mutató szerinti százalékos részesedésből a másik mutató szerinti százalékos részesedést Minden térség esetében az így kapott különbségek abszolút értékét vesszük (ABS) 2–4. lépések egy oszlopban is megoldhatók Az abszolút értékeket összegzem A kapott összeg értékét megfelezem 34
Hoover index kiszámítása Excelben F G 1 xi yi xi% yi% xi%–yi% absz 2 1. régió 8 4 40% =B2/B$6*100 40% =C2/C$6*100 0% =D2-E2 0% =ABS(F2) 3 2. régió 20% 10% 3. régió 6 30% 0% 5 4. régió –10% összesen 20 =SZUM(B2:B5) 10 =SZUM(C2:C5) 100% 20% =SZUM(G2:G5) 7 Hoover index 10% =G6/2 35
Hoover index elméleti maximuma B C D E F G 1 xi yi xi% yi% xi%–yi% absz 2 1. régió 12 60% =B2/B$6*100 0% =C2/C$6*100 60% =D2-E2 60% =ABS(F2) 3 2. régió 8 40% 0% 4 3. régió 5 4. régió 10 100% –100% 6 összesen 20 =SZUM(B2:B5) 10 =SZUM(C2:C5) 200% =SZUM(G2:G5) 7 Hoover index 100% =G6/2 36
Hoover index elméleti minimuma B C D E F G 1 xi yi xi% yi% xi%–yi% absz 2 1. régió 8 4 40% =B2/B$6*100 40% =C2/C$6*100 0% =D2-E2 0% =ABS(F2) 3 2. régió 20% 0% 3. régió 6 30% 5 4. régió 10% összesen 20 =SZUM(B2:B5) 10 =SZUM(C2:C5) 100% 0% =SZUM(G2:G5) 7 Hoover index 0% =G6/2 37
„Pszeudo-egymutatós” egyenlőtlenségi index Két nem fajlagos mutató területi eloszlása közötti eltérés mérése Pl. nép-jöv, kisebbség-egész társadalom stb. Egy fajlagos mutató területi egyenlőtlenségének mérése Pl. Jöv/fő, kisebbségek aránya 38
Hoover index használhatósága Egyik legjobban interpretálható eredményt adja a területi egyenlőtlenségi indexek közül Értékei 0–100 között mozognak: a 100 magas, a 0 alacsony érték (szórás-típusú területi egyenlőtlenségi mutatóknak nincs maximuma) H = 33% az egyik mutató 33 %-át kell a régiók között átcsoportosítani ahhoz, hogy a területi megoszlása megegyezzen a másikéval 39
Hoover index más neveken Robin Hood index („Rózsa Sándor” index) Népesség és jövedelem között Dinamikus értelmezés (itt lehet az egy évre jutó változást is mérni, ha 2 helyett 2t-vel osztunk) Korábbi és későbbi állapotok között (Településszociológiában Duncan&Duncan házaspár) Disszimilaritási index: rész–rész viszonylatban Szegregációs index: rész–egész viszonylatban, vagy rész–többi rész viszonylatban Egyes változatoknál nem százalékban fejezzük ki, ekkor értékkészlete: 0 ≤ H ≤ 1 Krugman index (Földrajz és kereskedelem c. könyv, 1993.) Ha nem osztjuk el 2-vel (nehezebben értelmezhető) 0 ≤ H ≤ 200 (vagy 0 ≤ H ≤ 2) 40
Hoover index vizsgálati lehetőségei Magyarország 2005 jöv-nép megyei szint Egy számítás önmagában általában kevés összehasonlítás kell: Területek között: pl. Szlovákiára is Időbeni állapotok között: pl. 1990-re is Mutatók között: pl. személygépkocsi és a népesség között is Területi szinteken (Hoover-index specialitása): pl. települési szinten is 41
Különböző területi szintek egyenlőtlenségek eltérő alakulása Az adóköteles jövedelmek területi egyenlőtlenségeinek változása különböző területi szinteken, Robin Hood index, 1998–2002 42
Földrajzi összefüggések elemzése: sztochasztikus módszerek 43
Társadalmi jelenségek együttmozgása Tagoltság vizsgálata: szinte sohasem szűkül le egy-egy jelenség (mutatószám) térbeli eloszlásának elemzésére Már a fajlagos adatok egyenlőtlenségeinek mérésekor is 2 jelenséget kapcsolunk össze Térbeli együttmozgások elemzése: kifejezetten területi kölcsönhatások (néha ok-okozati kapcsolatok) is megjelennek Összefüggések mérése: korreláció- és regressziószámítás Erősség: milyen erős az összefüggés Irány: egyenes (+) vagy fordított (–) arányosság 44
Szignifikancia Megbízható (szignifikáns) összefüggés: ha viszonylag nagy elemszámú mintából, hosszú adatsorból számítjuk Erős szignifikancia: megfigyelési egységek körét véletlenszerűen újabbakkal bővítve, nagy valószínűséggel nem változik az összefüggés iránya és szorossága Meghatározza: Elemszámtól (1000 vagy 10 területi egységre mérünk) Kapcsolat szorossági szintje (korreláció absz. 0,9 vagy 0) Szignifikancia-tesztek: pl. SPSS 45
Korreláció 46
Korreláció Jelzőszámok közötti kapcsolat szorosságának meghatározására szolgáló eljárás (egyfajta sajátos egyenlőtlenségi mutató Egy mutatószámmal (r): korrelációs együttható Korreláció típusai területi elemzésekben Lineáris korreláció azonos megfigyelési egységekre vonatkozó két adatsor között Autokorreláció Keresztkorreláció Ugyanígy lehet autoregresszió és keresztregresszió is Értékkészlete: –1 ≤ r ≤ 1 Mértékegysége nincs Súlyozás problémája a korrelációszámításban 47
Lineáris korreláció Lineáris korreláció azonos megfigyelési egységekre vonatkozó két adatsor között r = corr (xi yi) Legismertebb: Pearson-féle korrelációs együttható Egyfajta sajátos egyenlőtlenségi mutató 48
A korrelációs-együtthatók értékeinek értelmezése r értéke kapcsolat jellege r = 1 Lineáris függvénykapcsolat, egyenes arányosság van a két jellemző között 0,7 ≤ r < 1 Szoros kapcsolat, egyirányú együttmozgás 0,3 ≤ r < 0,7 Közepes erősségű kapcsolat, egyirányú együttmozgás 0 < r < 0,3 Gyenge kapcsolat, egyirányú együttmozgás r = 0 Nincs lineáris kapcsolat, a két jellemző korrelálatlan –0,3 < r < 0 Gyenge kapcsolat, ellentétes irányú együttmozgás –0,7 < r ≤ –0,3 Közepes erősségű kapcsolat, ellentétes irányú együttmozgás –1 < r ≤ –0,7 Szoros kapcsolat, ellentétes irányú együttmozgás r = –1 Lineáris függvénykapcsolat, fordított arányosság van a két jellemző között 49
Lineáris korrelációs együtthatók Pearson-féle lineáris korreláció együttható Excel fx= KORREL() Angol nyelvű Excel fx= CORREL() Spearman-féle rangkorreláció Ordinális (sorrendi) adatskála esetén di: összetartozó rangszámok különbségei 50
Korrelációs mátrix f(x) függvényvarázsló segítségével számítható A mátrixban szereplő adatsorok egymás mellé rendezése úgy, hogy üres oszlop és egyéb adat ne legyen benne! Mátrix keretének elkészítése a fejléc átmásolása vízszintesen és függőlegesen, a bal fölső cella üres) Minden sorból egy korrelációs együttható kiszámítása, a sorban állandó jelzőszám tömbjének betűjeli lerögzítendők! (További egyszerűsítés is végezhető, de teljesen automatikusan nem lehet kitölteni minden cellát!) Ellenőrzés: átlóban 1-esek szerepelnek, a mátrix az átlóra szimmetrikus 51
Regresszió-elemzés
Regressziószámítás a regionális elemzésekben Változókapcsolatokat valószínűségi (sztochasztikus) függvénykapcsolatként értelmezi Függő és független (vagy magyarázó) változók Független: x tengely, fajlagos mutató nevezője, bal oszlop Függő: y tengely, fajlagos mutató számlálója, jobb oszlop Típusai: Lineáris vagy nem lineáris Két- vagy többváltozós Alkalmas becslésre, előrejelzésre 53
Kétváltozós lineáris regresszió y = a + bx x: magyarázó (független) változó b: regressziós együttható (regressziós koefficiens): az egyenes meredekségét vagy dőlését jelöli (az x értékének egységnyi növekedése y értékének mekkora mértékű és milyen irányú változását vonja maga után a: regressziós állandó (konstans): értéke megegyezik az egyenes y tengelyen tapasztalt metszéspontjával (a értéke egyenlő y értékével x=0 helyen) y: a függő változó regressziós egyenlet alapján becsült értéke Determinációs együttható (R2) itt a Pearson-féle lineáris korrelációs együttható négyzete 54
Kétváltozós lineáris regresszó számítása Excelben A két adatsor egymás mellé rendezése úgy, hogy a bal oldalon az x tengelyre kerülő változó legyen. Szórásdiagram készítése (pontdiagram) Formázási műveletek Jobb klikk valamely pontra: trendvonal felvétele Egyenlet és r négyzet látszik Számítás 55
Kétváltozós lineáris regressziós összefüggések 56
Nem lineáris összefüggések Nem lineáris regressziós egyenletek alaptípusai Logaritmikus: y = a + (b*lnx) Polinomiális: y = a + (b1*x) + (b2*x2) + … + (bn*xn) Exponenciális y = a*bx Hiperbolikus y =a +b/x Hatványkitevős y = a*xb Determináció együttható (R2)dönti el, melyik írja le legjobban az adott összefüggést Azt a trendvonaltípust érdemes választani, amelynél magasabb az R2 értéke Elemzésük és értelmezésük nehézkesebb, mint a lineáris egyenleteké Idősorok elemzésénél, trendszámításban gyakrabban használják mint a területi adatok keresztmetszeti vizsgálatában 57
Nem lineáris összefüggések Nem lineáris regressziós egyenletek alaptípusai Logaritmikus: y = a + (b*lnx) Polinomiális: y = a + (b1*x) + (b2*x2) + … + (bn*xn) Exponenciális y = a*bx Hiperbolikus y =a +b/x Hatványkitevős y = a*xb Determináció együttható dönti el, melyik írja le legjobban az adott öszefüggést Elemzésük és értelmezésük nehézkesebb, mint a lineáris egyenleteké Idősorok elemzésénél, trendszámításban gyakrabban használják mint a területi adatok keresztmetszeti vizsgálatában 58
Grafikus ábrázolási módszerek
Grafikus ábrázolási módszerek Grafikus ábrázolási módszerek típusai Általános statisztikai grafikus módszerek Térképészeti eljárások Funkciói: eszköz és cél Kutatási munkában elemzési eszköz Dolgozatban, prezentációban illusztrációs cél Jó, ha szöveg nélkül is megállja a helyét (főleg PowerPoint-ban) De: nem helyettesítheti az elemzést: (minden ábrához legyen szöveg) 60
Minden lényeges információ rajta legyen (ismétlődés nélkül) Inkább a címben Vizsgált terület: pl. Magyarország (területi szint: pl. NUTS2-es régiók) Vizsgált jelenség: pl. regionális gazdasági fejlettségi különbségek Mutató: pl. egy főre jutó GDP Vizsgált idő (vagy időszak): pl. 2004 (vagy 2004–2012) Inkább a kategóriatengely feliratainál Mértékegység, pl. amerikai dollár/fő Egyik infó se szerepeljen egyszerre két helyen (vagy a címben vagy a kategóriatengelyen vagy a címben) Ritkán szerepel a cím magán az Excel ábrán (nem hiba) Word: ábra alá külön sorba (utólag is könnyebben módosítható), PowerPoint: előfordulhat, hogy már az Excelben felkerül) Mindig legyen forrásmegjelölés (PowerPoint-ban is) 61
Mindig a jelenséghez tartozó ábratípust válasszunk Egyszerűbb grafikus ábrázolási módszerek Oszlopdiagram Kördiagram: ritkábban ajánlott (csak kevés körcikkel) Pontdiagram Buborékdiagram Vonaldiagram (grafikon) Radar- (sugár-)diagram Háromszögdiagram 62
Pontdiagram: két dimenziós összehasonlítás Oszlopdiagram Kördiagram: nem ajánlott Sugárdiagram Buborékdiagram Pontdiagram Vonaldiagram (grafikon) Háromszögdiagram 63 Forrás: EuroStat
Pontdiagram speciális típusa a regressziós diagram Oszlopdiagram Kördiagram: nem ajánlott Sugárdiagram Buborékdiagram Pontdiagram Vonaldiagram (grafikon) Háromszögdiagram 64 Forrás: KSH T-Star