Elméleti mechanika alkalmazása a geotechnikában Dr Farkas József egyetemi tanár Czap Zoltán mestertanár BME Geotechnikai Tanszék
Geotechnikai modellalkotás 1.
Geotechnikai modellalkotás 2.
Geotechnikai modellalkotás 3.
Klasszikus mechanikai alkalmazások a geotechnikában Törési elméletek Terhelés Teherbírás Állékonyság Feszültségszámítás és süllyedésszámítás Rugalmas ágyazás
Törési elméletek Coulomb modell
Törési elméletek Terhelés
Törési elméletek Teherbírás
Törési elméletek Állékonyság
Feszültségszámítás Boussinesq
Rugalmas ágyazás Winkler
A talaj tulajdonságainak meghatározása Mintavétel-laboratóriumi vizsgálatok Helyszíni vizsgálatok
A hibák végeredményre gyakorolt hatása adathibák » modell hibák » számítási hibák Szemét be szemét ki
Klasszikus módszerek alkalmazása számítógépes környezetben
A sebességből adódó lehetőségek
Véges elemes módszer A változásokat vizsgáljuk Térbeli kiterjedés Elemtípusok Anyagmodellek
Térbeli kiterjedés: egydimenziós
Térbeli kiterjedés: kétdimenziós
Térbeli kiterjedés: háromdimenziós
Elemtípusok Fal Pont-pont horgony Talajtömeg Injektált horgony (geotextília) Pont-pont horgony Fal Határfelület
Anyagmodellek: rugalmas Es (lehet mélységgel növekvő), Alacsony terhelési szint Kemény agyag, tömör szemcsés A rugalmas modell használati köre korlátozott, csak kis terhelési szinteknél, nagy teherbírású talajoknál lehetséges. Betonelemek modellezésére is használható. Paraméterei: rugalmassági (összenyomódási) modulus, Poisson-tényező. A rugalmassági modulust (E) triaxiális kísérletből vagy egyirányú nyomásból határozhatjuk meg (kötött talajoknál). Általában az 50 %-os terhelési szinthez tartozó húrmodulust használjuk. Az összenyomódási modulus (Es) kompressziós kísérletből nyerhető, a mélységnek megfelelő terhelésnél. Homogén talajrétegben a merevség a mélységgel (az előterheléssel) nő, ha van rá adatunk, ezt számításba vehetjük. A Poisson tényező: Kavics: 0,25 Homok: 0,3 Homokliszt: 0,35 Iszap: 0,4 Agyag: 0,45
Anyagmodellek: Mohr-Coulomb Es, , , c Állékonyságvizsgálathoz Es A talaj elnyíródás előtt, vagy tehermentesítés-újraterhelésnél ideálisan rugalmas, a nyírószilárdság elvesztése után ideálisan képlékeny. Az elmozdulásokat rosszul modellezi, de stabilitásvizsgálatra tökéletesen alkalmas.
Anyagmodellek: puha *, *, , c Puha-sodorható kötött Rugalmas+képlékeny Rugalmas A puha (Cam-Clay) modell puha-sodorható állapotú kötött talajokhoz alkalmazható. Az alapja az, hogy a kompressziós vizsgálat féllogaritmikus léptékben közel lineáris. A kompressziós tényező (, szűz terhelésnél) és a duzzadási tényező (, tehermentesítésnél-újraterhelésnél) az alakváltozási jellemzői. A nyírási teherbírás a Mohr-Coulomb modell szerinti. Az alakváltozási tényezőkre ügyelni kell, mert a kompressziós kísérlet feldolgozása lehetséges hézagtényező, vagy fajlagos deformáció, illetve természetes, vagy tízes logaritmus szerint is. Tehermentesítés-újraterhelésnél a talaj (nem lineáris) rugalmasan viselkedik. Szűz terhelésnél (ha túllépjük az addig legnagyobb terhelési szintet), a rugalmas és a képlékeny alakváltozások keverten lépnek fel. Amit tehermentesítéssel visszanyerhetünk, az a rugalmas, amit nem, az a képlékeny. A duzzadási tényező ~1/3-1/5-ötöde a kompressziós tényezőnek.
Anyagmodellek: felkeményedő E0, m, Eur, , c Tömör szemcsés, kemény kötött A felkeményedő talajmodell kemény kötött és tömör szemcsés talajoknál használható. Főbb jellemzői: A nyírószilárdság a Mohr-Coulomb modell szerinti; Az összenyomódási és a rugalmassági modulus független paraméter, nincs Poisson tényező. Az összenyomódási modulus az átlagos főfeszültségtől (p) hatványfüggvény szerint függ. A kitevő 0 és 1 között lehet. Agyagokra 0,5, tömör kavicsra 1 a jellemző érték.
Anyagmodellek: felkeményedő Hiperbolával közelíti a triaxiális görbét A triaxiális görbét hiperbolával közelíti; Az aszimptota ~90 %-ától ideálisan képlékeny az anyag; Tehermentesítésre-újraterhelésre 3-5-ször merevebben viselkedik; Elsődleges terhelésnél itt is keverten jönnek létre a rugalmas és a képlékeny deformációk.
Anyagmodellek összehasonlítása
A jövő: diszkrét elemek módszere?
A jövő: fraktálok?
A jövő: ? ?????