EREDMÉNYEK, ADATOK FELDOLGOZÁSA

Slides:



Advertisements
Hasonló előadás
Koordináták, függvények
Advertisements

I. előadás.
Gazdasági informatika
Petrovics Petra Doktorandusz
Gazdasági informatika
Táblázat kezelő programok
Táblázat kezelő programok I.
Csoportosítás megadása: Δx – csoport szélesség
A megoldás főbb lépései:
Mérési pontosság (hőmérő)
Gazdaságelemzési és Statisztikai Tanszék
Microsoft Excel 2010 Gyakoriság.
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Közlekedésstatisztika
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Gazdasági informatika
3. előadás.
3. előadás.
A középérték mérőszámai
Gazdasági informatika II.
Microsoft Excel Függvények VI..
Microsoft Excel Függvények VIII.
Excel Hivatkozások, függvények használata
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Függvények.
Idősor komponensei Trend vagy alapirányzat: az idősor alakulásának fő irányát mutatja meg. Szezonális vagy idényszerű ingadozás: szabályos időszakonként.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Statisztika.
Félévi típus feladatok
Excel Függvények Páll Boglárka.
Készítette: Horváth Zoltán (2012)
Kvantitatív módszerek
“Cserey-Goga”iskolacsoport Kraszna X.B Statisztikamánia csoportja S TATISZTIKAI FÜGGVÉNYEK.
Leíró statisztika III..
Valószínűségszámítás
Statisztikai módszerek a pedagógiai kutatásban
Az osztály tanulmányi előmenetelének tanulmányozása Használt függvények bemutatása, magyarázata Forrás: ubuntu.huubuntu.hu.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Adatleírás.
Dr Gunther Tibor PhD II/2.
I. előadás.
Statisztikai alapfogalmak
Turócziné Kiscsatári Nóra
Viszonyszámok A viszonyszám két egymással logikai kapcsolatban álló statisztikai adat hányadosa V= A/B V: a viszonyszám A:a viszonyítás alapját képező.
Táblázatkezelés KÉPLETEK.
Középértékek – helyzeti középértékek
Valószínűségszámítás II.
Közúti és Vasúti Járművek Tanszék. A ciklusidők meghatározása az elhasználódás folyamata alapján Az elhasználódás folyamata alapján kialakított ciklusrendhez.
A számítógépes elemzés alapjai
BIOLÓGUS INFORMATIKA 2008 – 2009 (1. évfolyam/1.félév) 6.
Statisztikai és logikai függvények
Táblázatkezelés Képletek és függvények. Képletek A képletek olyan egyenletek, amelyek a munkalapon szereplő értékekkel számításokat hajtanak végre. A.
A számítógépes elemzés alapjai
Leíró statisztika gyakorló feladatok október 15.
I. Előadás bgk. uni-obuda
Adatfeldolgozási ismeretek műszeres analitikus technikusok számára
5. Kalibráció, függvényillesztés
A leíró statisztikák alapelemei
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
Adatfeldolgozási ismeretek környezetvédelmi-mérés technikusok számára
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Előadás másolata:

EREDMÉNYEK, ADATOK FELDOLGOZÁSA

Statisztikai számítások Excellel Minta vizsgálata – LEÍRÓ STATISZTIKA Megjegyzés: a statisztikai függvények zömének paramétere az adathalmaz, ezért nem részletezzük az egyes függvények paraméterezését!

Statisztikai adatok Mérhető adatok (Kvantitatív): olyan adatok, melyek mérésből származnak. Megállapítható adat: Nem számadat, kategória – „kategorizált adat” (Kvalitatív): Pl. nem(férfi, nő); igen-nem válaszlehetőségek; 2 gyereke van – ebben az esetben az a fontos, hogy a kétgyermekes kategóriába tartozik.

Középértékek

Számított középértékek Matematikai összefüggés alapján számíthatók ki: Számtani (Aritmetikai) átlag Egyszerű Súlyozott Harmonikus átlag Mértani (Geometriai) átlag Négyzetes (Kvadratikus) átlag

Számtani átlag Számítsuk ki az adott osztály átlagát matematikából a megadott eredmények alapján! =ÁTLAG( ) - AVERAGE()

Mértani átlag Egy vállalat nyereségét tartalmazza az alábbi táblázat az 1982 – 92 években: =MÉRTANI.KÖZÉP – GEOMEAN() Feladat: Határozzuk meg az adott időszakra a nyereség növekedésének átlagos ütemét!

Feladat Tegyük fel, hogy egy üzem dolgozóinak elmúlt havi teljesítményszázalékai az alábbiak: - Határozzuk meg a mediánt! MEDIÁN X db Mediánnál kisebb Y db Mediánnál nagyobb X=Y

Excel függvényei MEDIÁN() – MEDIAN() KVARTILIS() – QUARTILE() PERCENTILIS() – PERCENTILE(): k-dik percentilis SZÁZALÉKRANG() – PERCENTRANK(): egy értéknek egy adathalmazon vett százalékos rangját adja MAX MIN KICSI() – SMALL():Egy adathalmaz k-dik legkisebb elemét adja értékül! NAGY() – LARGE(): Egy adathalmaz k-dik legnagyobb elemét adja értékül! SORSZÁM()- RANK(): Egy szám sorszámát adja, meg ha az adatokat sorba rendezzük

Próbálja ki! Rendezze át az adatokat! Módusz Leggyakrabban előforduló ismérvérték =MÓDUSZ() – MODE() Figyelem! Több azonos gyakoriságú adat esetén a sorrendben az elsőt adja móduszként! – Próbálja ki! Rendezze át az adatokat!

Képlet beírás befejezése: Feladat Készítsen kimutatást, hogy hány db 1;2;3;4 és 5 lett matematikából! ={GYAKORISÁG(tartomány; csoportosítási tömb)} TÖMBKÉPLET! Képlet beírás befejezése: [CTRL + SHIFT + ENTER]

Gyakoriság =Gyakoriság() – FREQUENCY() Adott adathalmazban melyik érték hányszor szerepel

Mérőszámok Terjedelem Interkvartilis félterjedelem Átlagos abszolút eltérés Szórás – Szórásnégyzet (Variancia) Relatív szórás (Variációs koefficiens)

Függvények az Excelben = SQ()- átlagtól való eltérések négyzetének összegét adja eredményül =SZÓRÁSP() –STDEVP()- szórás =VARP() – variancia (szórásnégyzet) =ÁTL.ELTÉRÉS – átlagos abszolút eltérés – AVEDEV()

Függvények DARAB () - COUNT() DARAB2() – COUNTA() a megadott tartomány számmal kitöltött celláinak a számát adja DARAB2() – COUNTA() a megadott tartomány értékkel kitöltött celláinak (nem üres) a számát adja DARABTELI () – COUNTIF () a megadott tartományban megszámolja, hogy hány darab cella felel meg a megadott kritériumnak DARABÜRES () – COUNTBLANK () A megadott tartományban megszámolja hány db cella üres

Feladat A megadott adathalmaz egy osztály matematika eredményeit tartalmazza. Határozzuk meg, hogy hány db elégtelen lett! Vizsgáljuk meg, hogy van-e olyan tanuló, akinek nincs beírva az érdemjegy – még nem zárták le? =DARABTELI(tartomány; kritérium) =DARABÜRES(tartomány)

Feladat Készítsen kimutatást, hogy hány db 1;2;3;4 és 5 lett matematikából! Hány cellában van adat – azaz hány tanuló kapott már érdemjegyet? =DARABTELI(tartomány; kritérium) =DARAB(tartomány)

Trendszámítás - elmélet Trend: Az időben változó jelenségek alakulásában mindig megfigyelhetünk alapvető tendenciákat (növekedés, csökkenés…stb) Szezonális ingadozás: Rendszeresen visszatérő hullámzás Ciklushatás: fel-le mozgás hatása (konjunktúra - dekonjunktúra) Véletlen hatás: előre nem látható események befolyása

Trendszámítás formái Analitikus trendszámítás Mozgóátlagolású trendszámítás

Lineáris függvény felírása Egy vállalat dolgozóinak létszámváltozását tükröző lineáris függvény felírása, ábrázolása! Függvény egyenlete: Y:létszám – függő változó! X:év – független változó! Y=20,4*x+198,3 LIN.ILL függvényről ={LIN.ILL(létszám;évek;;;)}

LIN.ILL függvény használata Tömbképletként – Ha csak két adathalmazról van szó X és Y, akkor kettő cellát kijelölve a képlet beírása után CTRL+SHIFT+ENTER leütéssel képezzük a tömbképletet – LÁSD: példa! Ha nem alkalmazunk tömbképletet, akkor a kapott érték az egyenes meredeksége lesz – következő dia! 2 adatsor esetén alkalmazhatjuk a következőképpen is: Meredekség meghatározása: =INDEX(LIN.ILL(y;x);1); Y metszéspont meghatározása: =INDEX(LIN.ILL(y;x);2); Lásd! Következő dia!

Példák a LIN.ILL függvény alkalmazására

Grafikon rajzolása – trendegyenesek Rajzoltassunk ki egy grafikont a közölt adatokból! (BeszúrásDiagram) Jelöljük ki a grafikont DiagramTrendvonal felvétele Típus lap: Tetszőleges függvény kiválasztása Egyebek lap: Beállíthatjuk, hogy az egyenlet látszódjon R négyzet értékét is megjeleníthetjük

Példa – Trendegyenes kirajzoltatása

Lineáris egyenes meredekségének és y tengelymetszetének meghatározása Külön függvényekkel (természetesen a LIN.ILL is ugyanezt adja eredményül) Meredekség: MEREDEKSÉG(y;x) = m Y tengelymetszet: METSZ(y;x) = b

Exponenciális függvény felírása Egy vállalat dolgozóinak létszámváltozását tükröző exponenciális függvény felírása, ábrázolása! LOG.ILL függvényről ={LOG.ILL(létszám;évek;;;)}

Előrejelzés a trendegyenlet alapján Határozzuk meg a lineáris és exponenciális trend alapján, hogy mennyi lesz a létszám 2001-ben és 2002-ben! TREND(y;x;új_x;konstans) függvénnyel – lineáris NÖV(y;x;új_x;konstans) - exponenciális

Példa: Adott egy osztály matematikából kapott eredménye. Számítsuk ki a jellemző középértékeket (átlag, medián, módusz) valamint a szórást!

Feladat Az előző feladatban közölt adatokkal dolgozva állapítsuk meg a gyakoriságokat – hány hallgató kapott 1,2,3,4,5 osztályzatot matematikából? Készítsünk diagramot is!