A genetika (örökléstan) tárgya

Slides:



Advertisements
Hasonló előadás
Kromoszómák.
Advertisements

Utazás a sejtben Egy átlagos emberi sejt magja megközelítőleg 510-15 gramm mennyiségű és 1,8-2 méter hosszúságú (3000 millió bázispárnyi) DNS-ből,
A fehérjék.
Mutációk.
Sejtjeink jellemzői 4. Lecke 8. osztály.
DNS replikáció DNS RNS Fehérje
A humán genom projekt.
Nukleinsavak – az öröklődés molekulái
Fehérjeszintézis Szakaszai Transzkripció (átírás)
Az intergénikus régiók és a genom architektúrájának kapcsolata Craig E Nelson, Bradley M Hersh és Sean B Carrol (Genome Biology 2004, 5:R25) Bihari Péter.
Az immunoglobulin szerkezete
Mendel és a cicusok.
A Mendel-i öröklődés Falus András
Molekuláris genetika Falus András.
Antigén receptorok Antitest, T sejt receptor A repertoire (sokféleség) kialakulása Genetikai, Sejt- és Immunbiológiai Intézet Falus András.
Fejezetek a genetikából Perczel Tamás
Kedvenc Természettudósom:
A sejtmagon kívüli genom
Génexpresszió (génkifejeződés)
MUTÁCIÓ ÉS KIMUTATÁSI MÓDSZEREI
A kromoszómák működése, jellemzői:
Mendeli genetika Allél Monohibrid -Dihibrid Autoszóma – alloszóma
Öröklődés molekuláris alapjai
Bevezetés a genetikába
Ivari kromoszómás jellegek és humángenetika
A nukleinsavak.
Plazmidok Készítette: Vásárhelyi Miklós. : E. Coli jól használható genetikai kísérletekben: Genomja kicsi(4,2*10 6 bázispár, kb. ezrede az emberének)
DNS chipek, DNS hibridizáció
Az öröklődés - Dedičnosť
Nukleotid típusú vegyületek
Az izomdystrophiák molekuláris genetikai vizsgálata
A herediter sensorimotoros neuropathiák (HSMN) – Charcot-Marie-Tooth betegségek (CMT) genetikai háttere Karcagi Veronika FJ Országos Közegészségügyi Központ.
Arabidopsis thaliana tip120 inszerciós mutáns jellemzése
ÖRÖKLÉS, KÖRNYEZET, NEVELÉS
NUKLEINSAVAK MBI®.
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
Az ember egyszerű mendeli genetikája
A genetika születése: Mendel kísérletei-1865 újrafelfedezése-1900
Domináns episztázis – lovak
A Drosophila szemszín öröklődése
Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika
A P elem technikák: enhanszerek és szupresszorok azonosítása
A gének szerepe az ember életének ( „ sorsának” ) alakulásában
Nukleinsavak énGÉN….öGÉN.
Genetika Leszek a klónom?!.
A genom variabilitás orvosi jelentősége Gabor T. Marth, D.Sc. Department of Biology, Boston College Orvosi Genomika kurzus – Debrecen, Hungary,
Kromoszómák, kromoszóma-aberrációk
Gének, környezet, viselkedés
GÉNEK ÉS VISELKEDÉS.
Honalapító őseink genetikai öröksége Kristóf Zoltán, 2013.
lecke A genetikai kódrendszer Gének és allélek.
Emberi tulajdonságok genetikai háttere
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
24. lecke Nuklein- vegyületek. A nukleotidok Összetett szerves vegyületek építőmolekulái: építőmolekulái:  5 C atomos cukor (pentóz)  Ribóz  Dezoxi-ribóz.
Genetika összefoglalás. Genetika: Öröklődés: Változékonyság: Molekuláris genetika: Genetikai kódrendszer egységei a szervesbázis hármasok jellemzői: Centrális.
leckék Az öröklődés alaptörvényei A domináns-recesszív öröklésmenet Az intermedier és kodomináns öröklésmenet.
Nukleinsavak. Nukleinsavak fontossága Az élő szervezet nélkülözhetetlen, minden sejtben megtalálható szénvegyületei  öröklődés  fehérjék szintézise.
Minőségi és mennyiségi jellegek öröklődése
43. lecke A Humán Genom Program
Polimeráz Láncreakció:PCR, DNS ujjlenyomat
Gének egymástól független öröklődése Mendel második törvénye
DNS replikáció DNS RNS Fehérje
lecke A gének megváltozása. A génösszetétel megváltozása
Humángenetika Makó Katalin.
Géntérképezés.
FOGALMAK DNSasfehérje (szabályozó/szerkezeti)
Komenczi Bertalan Információelmélet
Hattagú heterociklusos vegyületek
Előadás másolata:

A genetika (örökléstan) tárgya Mivel foglakozik? A genetika a génekkel foglalkozó tudomány. A gének az öröklődés anyagi egységei. Néhány alapkérdés: Hogyan adódnak át a tulajdonságok nemzedékről nemzedékre (szülőktől az utódokba)? (Nem a tulajdonságok, hanem a gének öröklődnek.) Hogyan határozza meg a genetikai anyag (a gének) az egyedek tulajdonságait? Az egyes tulajdonságok milyen mértékben örökölhetők (gének és környezet)? Hogyan változik a genetikai anyag? Hogyan alakulnak ki új tulajdonságok? Milyen a molekuláris szerkezete a genetikai anyagnak (géneknek)?

A genetika részterületei Klasszikus genetika (mendeli genetika): az egyedek szintjén vizsgálja a tulajdonságok átörökítését. Sejtgenetika (citogenetika): az öröklődés törvényszerűségeinek sejtszintű vizsgálatával foglakozik. A fénymikroszkóppal megfigyelhető kromoszóma jellemzőket vizsgálja. Molekuláris genetika: a genetikai anyag molekuláris szerveződését és molekuláris működését vizsgálja. Magyarázattal szolgál a klasszikus genetika és a citogenetika törvényszerűségeire. Populáció- és evolúciógenetika: a populációk szintjén zajló genetikai folyamatokat vizsgálja: hogyan változik a populációk génállománya, mi az evolúció genetikai alapja? Alkalmazott genetika: orvosi genetika, állat és növénynemesítés, kriminológia stb. A molekuláris genetikai ismeretek alkalmazását jelenti a géntechnológia (genetikai mérnökség, genetikai manipuláció), amely az ismeretek birtokában a genetikai anyagot molekuláris szinten módosítja. A biotechnológia általánosabb fogalom: élő szervezet technológiai alkalmazását jelenti, és nem szükséges feltétele a genetikai manipuláció (pl. a C-vitamin baktériumokkal való termeltetése).

Mi a gén? A gén az öröklődés (anyagi) alapegysége. 1. A gén egy olyan része a kromoszómának, amely egy tulajdonság kialakulását meghtározza/befolyásolja (klasszikus genetikai génfogalom). Pl. a szemszín génje a genetikai anyag (kromoszóma, DNS) azon része, amely a szem pigmentanyagának kialakulását meghatározza. 2. Molekuláris értelmezés: A gén a DNS molekula olyan szakasza, amely egy polipeptidlánc szintézisét meghatározza = egy polipeptidlánc aminosav sorrendjét kódolja. (régebbi molekuláris genetikai génfogalom) 3. A gén egy működőképes DNS szakasz. A gén egy olyan DNS szakasz, amely valamilyen, a szervezet számára szükséges információt kódol. (modern mol. gen. génfogalom) Működése alapján lehet: - strukturgén: olyan gén, amely RNS-be átíródhat: egy polipeptidlánc aminosav sorrendjét határozza meg vagy az r- és t-RNS gének. - szabályozó régió

Emberi DNS, emberi gének Az emberi genom mérete 2 819 000 bázispár, ennek csak kb. 1%-a fehérjékbe átíródó strukturgén. Ezen gének száma 40 000 körüli. A genom 90%-a ismétlődő, nem funkcionális szakasz. A genom 2-3%-ának lehet hatása a fenotípusra (megfigyelhető tulajdonságokra). A többi rész pszeudogéneket és nem ismétlődő, valószínűleg funkció nélküli részeket tartalmaz. Az emberek közötti különbségekért hozzávetőlegesen 2-3 millió bázispárnyi különbség felel (ez a teljes genom 0,1%-a). A genom többi része mindenkiben azonos. Ezen különbségeknek kevesebb mint 1%-a esik a DNS géneket kódoló szakaszaiba, így a jelentéssel is bíró különbség jóval kisebb. Az egyes emberek közötti genetikai variabilitás forrása inkább csak néhány ezer bázis. Az ember és a csimpánz DNS-e kb. 99%-ban azonos.

Alapfogalmak Gén, genom Kromatin állomány, kromoszóma, homológ kromoszóma Genetikai információtartalom (ploidia): hapoid, diploid, poliploid: euploid, aneuploid Allél Genotípus és fenotípus Homozigóta és heterozigóta Allékölcsönhatások: domináns-recesszív intermedier kodominancia Keresztezés, tesztelő keresztezés Független és kapcsolt öröklődés Mutáció

a gén helye a kromoszómán (locus)

Homozigóta és heterozigóta A PP, pp genotípusú növény esetében az allélpár mindkét tagja azonos, így az egyedet az adott tulajdonságra nézve homozigótának nevezzük A Pp genotípusú növények esetben, a gén kétféle allélt tartalmaz, így az egyedet az adott tulajdonságra nézve heterozigótának nevezzük

Két különböző allél Azt az allélt, amely homo- (PP) és heterozigóta (Pp) állapotban is kifejeződik DOMINÁNS allélnak nevezzük Ha egy allélpár fenotípusosan csak homozigóta állapotban fejeződik ki, akkor az allél RECESSZíV

Géncsaládok* Néhány gén a genomban 2-nél több példányban található, ezeket géncsaládoknak nevezzük. Az ezen gének által kódolt fehérjék többnyire nagy mennyiségben szükségesek a sejtben. A gének lehetnek szétszórva vagy egymás mellett. Példák: Aktin 5-30 példány Keratin >20 példány Miozin nehéz lánc 5-10 példány Tubulin 3-15 példány Peteburok fehérje 50 példány Globinok 5 példány Immunglobulin variábilis szakasz 500 példány Egy családon belül a gének nukleotid sorrendje különbözhet, sőt az evolúció során a homológok eltérő funkciót is nyerhetnek. (pl. humán hemoglobinok). Egy családon belül egyes gének mutációk révén teljesen el is veszthetik a funkcióképességüket. Így keletkeznek az át nem íródó pszeudogének. *nem tananyag

Sokszorosan ismétlődő gének* Bizonyos gének nagy példányszámú ismétlődő kópiái mindig szorosan egymás mellett elhelyezkedő sorozatokat alkotnak. Ezek termékeiből minden sejtben nagy mennyiségű szükséges. Ilyenek például a riboszómális RNS-ek génjei a tRNS génjei és a hiszton gének (100-1000 példány) A riboszómális RNS-t kódoló gének helye a sejtmagvacskában lévő DNS, ami citológiailag a másodlagos befűződés helye a kromoszómán. *nem tananyag