Kémiai anyagszerkezettan

Slides:



Advertisements
Hasonló előadás
A NAP SZÍNKÉPE Megfigyelés különböző hullámhosszakon
Advertisements

A H-atom kvantummechanikai tárgyalása Tanulságok 1.
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
1. Anyagvizsgálat Feladat Tervezés számára információt nyújtani.
3. A HIDROGÉNATOM SZERKEZETE
9. Fotoelektron-spektroszkópia
Számításos kémia.
5. OPTIKAI SPEKTROSZKÓPIA. 5.1 A Born-Oppenheimer közelítés.
1. A KVANTUMMECHANIKA AXIÓMÁI
Színképek csoportosítása (ismétlés)
Szilárd anyagok elektronszerkezete
A kvantummechanika rövid átismétlése
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Elektromágneses hullámok
Dr. Csurgai József Gyorsítók Dr. Csurgai József
A kvantummechanika alapegyenlete, a Schrödinger-féle egyenlet és a hullámfüggvény Born-féle értelmezése Előzmények Az általános hullámegyenlet Megoldás.
4. A MOLEKULASZERKEZETRE VONATKOZÓ ÁLTALÁNOS ELVEK.
15. A RÖNTGENDIFFRAKCIÓ.
3. A TÖBBELEKTRONOS ATOMOK SZERKEZETE
Ami kimaradt....
2. A KVANTUMMECHANIKA AXIÓMÁI
A H-atom kvantummechanikai tárgyalása Tanulságok
Szimmetriaelemek és szimmetriaműveletek (ismétlés)
2. A KVANTUMMECHANIKA AXIÓMÁI
2. A HIDROGÉNATOM SZERKEZETE
Kémiai anyagszerkezettan
8. A MOLEKULÁK ELEKTRONSZERKEZETE
5. OPTIKAI SPEKTROSZKÓPIA
15. A RÖNTGENDIFFRAKCIÓ.
3. A HIDROGÉNATOM SZERKEZETE A hidrogénatom Schrödinger-egyenlete.
1. A KVANTUMMECHANIKA AXIÓMÁI
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
1 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
A héliumatom állapotainak levezetése a vektormodell alapján (kiegészítés) 1.
11 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
2. A KVANTUMMECHANIKA AXIÓMÁI 1. Erwin Schrödinger: Quantisierung als Eigenwertproblem (1926) 2.
Kémiai anyagszerkezettan Bevezetés
A H-atom kvantummechanikai tárgyalása Tanulságok
Kémiai anyagszerkezettan Bevezetés Előadó: Dr. Kubinyi Miklós tel: 21-37
A H-atom kvantummechanikai tárgyalása Tanulságok
6. A MOLEKULÁK FORGÓMOZGÁSA
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
A H-atom kvantummechanikai tárgyalása Tanulságok
3. A HIDROGÉNATOM SZERKEZETE
ATOMFIZIKAI ALAPOK.
Elektrongerjesztési (UV-látható) spektroszkópia
Az atom szerkezete Készítette: Balázs Zoltán BMF. KVK. MTI.
11. előadás Atomfizika.
6. A MOLEKULÁK REZGŐ MOZGÁSA
OPTIKAI SPEKTROSZKÓPIA Festékpróbák az anyagtudományban (KM), szept Fluoreszcencia-spektroszkópia (VT), szept Fotodinamikus.
Az anyagszerkezet alapjai
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Elektromágneses rezgések és hullámok
Színképfajták Dóra Ottó 12.c.
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
Máté: Orvosi képfeldolgozás1. előadás1 A leképezés tárgya Leképezés Képfeldolgozás Felismerés Leletezés Diagnosztizálás Terápia Orvosi képfeldolgozás Minden.
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
E, H, S, G  állapotfüggvények
Kémiai anyagszerkezettan Grofcsik András tel: Előadó: Kubinyi Miklós tel: Kállay Mihály tel:
Kémiai anyagszerkezettan 1 Előadó: Kubinyi Miklós Tel:
Molekula A molekula semleges kémiai részecske, amely két vagy több atom összekapcsolódásával alakul ki.
Molekula-spektroszkópiai módszerek
Kémiai anyagszerkezettan
Kémiai anyagszerkezettan
Analitikai Kémiai Rendszer
DEe >> DEvib >> DErot
5. OPTIKAI SPEKTROSZKÓPIA
4. A MOLEKULASZERKEZETRE VONATKOZÓ ÁLTALÁNOS ELVEK
OPTIKAI SPEKTROSZKÓPIA 2004
Előadás másolata:

Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu

Tananyag az intraneten (tavalyi): http://oktatas. ch. bme eload02 jegyzet02

Tananyag (eload02) I. BEVEZETÉS (Bevez02) II. A KVANTUMMECHANIKA AXIÓMÁI (Axiom02v) III. A HIDROGÉNATOM SZERKEZETE (H_atom02) IV. A TÖBBELEKTRONOS ATOMOK ELEKTRONSZERKEZETE (Tobbel02) V. OPTIKAI SPEKTROSZKÓPIA (Optsp02) VI. A MOLEKULÁK FORGÓMOZGÁSA (Forgo02) VII. A MOLEKULÁK REZGŐMOZGÁSA (Rezgo02) VIII. A MOLEKULÁK ELEKTRONSZERKEZETE (Molel02AN, Szamkem02b) IX. FOTOELEKTRON-SPEKTROSZKÓPIA (Upsxps02) X. LÉZEREK, LÉZERSPEKTROSZKÓPIAI MÓDSZEREK (Lezer02) XI. AZ ATOMMAGOK ENERIGIAÁLLAPOTAI (Magszerk02) XII. A MÁGNESES MAGREZONANCIA XII. AZ ELEKTRONSPIN-REZONANCIA (-) XIV. TÖMEGSPEKTROSZKÓPIA (-) XV. A RÖNTGENDIFFRAKCIÓ (-)

Tananyag az intraneten (idei): http://oktatas. ch. bme eload03 jegyzet03

Emelt szintű tananyag 2004 tavasz, ~ 6 előadás

Fizikai Kémia Fizikai Kémia I. - egyensúlyok (fázisegyensúlyok, kémiai egyensúlyok) Fizikai Kémia II. - változások (reakciókinetika, transzportfolyamatok) Fizikai Kémia III. - szerkezet (molekulák szerkezete, anyagok szerkezete)

Bevezetés I. Példák kémiai szerkezetvizsgálati feladatokra

Gyógyszer-hatóanyag Epibatidin Erős fájdalomcsillapító Trópusi béka bőréből izolálták Származékok szintézise: Szerves Kémia Tanszék

Szerkezeti képlet igazolása Királis C-atom konfigurációja Gyógyszerhatás mechanizmus felderítéséhez (az élő szervezettel hogyan lép kölcsönhatásba): térszerkezet (= „molekulageometria”), atomi töltések, stb. Kristálymódosulat azonosítása

Elektrokémiai szenzor hatóanyaga „BME 44” koronaéter Kálium ionnal komplexet képez. Szelektív! Orvosi, biológiai minták káliumtartalmát meghatározó műszerben alkalmazzák (HORIBA)

Szerkezeti képlet A koronaéter-gyűrű geometriája K+- BME44 „szupramolekuláris” komplex szerkezete (koordanatív kötések, töltéseloszlás)

Iniciátor PVC polimerizációjához Hő hatására gyökösen hasad (peroxikötés) Felhasználásával kiváló minőségű PVC állítható elő (BORSODCHEM-ben alkalmazzák)

Szerkezeti képlet O-O kötés erőssége Gyök szerkezete és reakciókészsége Gyökkoncentráció követése a reakció során

Szénhidrogén konverziója Pt-katalizátorral Kiindulási anyag: n-oktán Termékek i-oktán (motorbenzinben előnyös), aromások (káros) Az ötvöző anyag hatására megváltozik a termékösszetétel

Az ötvözet elemi összetétele Felületi összetétel Felületen megkötődő szénhidrogének kimutatása

1.1. Bevezetés a spektroszkópiába

A molekuláknak és a többi mikrorészecskének szerkezetét a kvantummechanika írja le. A kvantummechanika alapvető törvényeit az 1920-as években ismerték fel. Előzmény: néhány kísérlet, amely a klasszikus fizikának ellentmondó eredményre vezetett.

Joseph Fraunhofer kísérlete 1815 A Nap fényét optikai rácson felbontotta. A folytonos színképben fekete vonalakat észlelt.

Magyarázat:  a Nap folytonos sugárzást ad   a Napot és a Földet körülvevő gázburok molekulái csak bizonyos hullámhosszú/frekvenciájú fotonokat (fénykvantumokat) nyelnek el.    Az A molekula a rá jellemző A1, A2... a B molekula a rá jellemző B1, B2...     Ezért az A molekula energiája EA= hA1, hA2… energiakvantumokkal változhat, a B molekuláé EB= hB1, hB2… energiakvantumokkal, stb.

A mikrorészecskék fizikai sajátságai közül egyesek - köztük az energiájuk - csak bizonyos meghatározott - kvantált - értékeket vehetnek fel. Erre utal a kvantummechanika elnevezés.

EGYSUGARAS UV-LÁTHATÓ ABSZORPCIÓS SPEKTROMÉTER

Oxazin 1 N C 2 H 5 + C O 2 H 5 N N - C H C H 2 5 ClO 2 5 4

Oxazin 1 UV-látható abszorpciós spektruma 0,5 1 1,5 2 2,5 200 400 600 800 Hullámhossz (nm) Abszorbancia

1.2. Bevezetés a kvantummechanikába

Erwin Schrödinger: Quantisierung als Eigenwertproblem (1926)

A Schrödinger-egyenlet A kvantummechanika legfontosabb összefüggése! (Röviden: )

Differenciálegyenlet a molekulát alkotó atommagok és elektronok helykoordinátái szerinti differenciálhányadosokat tartalmaz ezen koordináták közös jelölése: 

Pl.: H2S molekula esetében  (magok) (elektronok)

() a molekula állapotfüggvénye E a molekula energiája Hamilton-operátor Az operátor függvényen végzett műveletet jelöl ki. A Hamilton-operátor több tagból áll, amelyek közül egyesek a magok és az elektronok térkoordinátái szerinti parciális deriválást tartalmaznak. () a molekula állapotfüggvénye E a molekula energiája

E1, E2, E3... energia-sajátértékek A differenciálegyenletek megoldásai függvények. A Schrödinger-egyenlet megoldásai a 1(), 2(), 3()... állapotfüggvények és a hozzájuk tartozó E1, E2, E3... energia-sajátértékek

Az állapotfüggvény jelentősége I. A molekula -ik állapotát jellemző () állapotfüggvény megadja, hogy a tér egyes pontjaiban mekkora az elektronok és a különféle atommagok tartózkodási valószínűsége. Ebből leszármaztatható - a magok elhelyezkedését jellemző kötéstávolságok, kötésszögek (molekulageometria) - az atomok parciális töltései (reakciókészséghez fontos) - kémiai kötések erőssége

Az állapotfüggvény jelentősége II. Elméleti úton számítható a spektrum!

Elnyelési (abszorpciós spektrum): a fényelnyelés intenzitása a fény frekvenciájának függvényében. Kibocsátási (emissziós) spektrum: a fénykibocsátás intenzitása a fény frekvenciájának függvényében.

Az állapotfüggvény jelentősége II. Elméleti úton számítható a spektrum! Az elnyelési frekvenciákat a kiindulási állapot ( ) és a végállapot () energiájának különbsége határozza meg: E - E = h  A spektrumvonal intenzitása arányos a két állapot ( és ) közötti sugárzásos átmenet valószínűségével, amely kiszámítható, ha ismerjük a molekula állapotfüggvényét kiindulási állapotban (()) és a végállapotban (()).

1.3. A kémiai szerkezetvizsgálati módszerek áttekintése

Az elektromágneses sugárzás tartományai 106 108 1010 1012 1014 1016 1018 1018 1020 1022 [Hz] rádió-hullámú mikrohullámú infravörös látható ultraibolya röntgen gamma

OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) 106 108 1010 1012 1014 1016 1018 1018 1020 1022 [Hz] rádió-hullámú mikrohullámú infravörös látható ultraibolya röntgen gamma OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése)

OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) 106 108 1010 1012 1014 1016 1018 1018 1020 1022 [Hz] rádió-hullámú mikrohullámú infravörös látható ultraibolya röntgen gamma OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) NMR SPEKTROSZKÓPIA (magok gerjesztése)

OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) 106 108 1010 1012 1014 1016 1018 1018 1020 1022 [Hz] rádió-hullámú mikrohullámú infravörös látható ultraibolya röntgen gamma OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) NMR SPEKTROSZKÓPIA (magok gerjesztése) FOTOELEKTRON SPEKTROSZKÓPIA (molekulák ionizálása)

OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) 106 108 1010 1012 1014 1016 1018 1018 1020 1022 [Hz] rádió-hullámú mikrohullámú infravörös látható ultraibolya röntgen gamma OPTIKAI SPEKTROSZKÓPIA (molekulák gerjesztése) NMR SPEKTROSZKÓPIA (magok gerjesztése) FOTOELEKTRON SPEKTROSZKÓPIA (molekulák ionizálása) MÖSSBAUER SPEKTROSZKÓPIA (magok gerjesztése)