A 100 Mbit/s sebességű Ethernet
A két fontosabb és elterjedtebb technológia a 100BASE-TX, amely réz UTP átviteli közeget használ, illetve a 100BASE-FX, amely többmódusú optikai szálat alkalmaz.
Jellemzők A 100BASE-TX és a 100BASE-FX három közös jellemzője az időzítési paraméterek értékei, a keretformátum és az átviteli folyamat részei.
A 100BASE-TX és a 100BASE-FX azonos időzítési paramétereket használnak. 100 Mbit/s sebesség mellett a bitidő = 10 ns = 0,01 mikroszekundum = 1 tízmilliomod másodperc.
A 100 Mbit/s sebességű változatok keretformátuma a 10 Mbit/s sebességűekével azonos.
A Fast Ethernet tízszer gyorsabb a 10BASE-T-nél. A bitek elküldését rövidebb idő alatt, vagyis gyorsabban végzi el. A nagyobb frekvenciájú jelek érzékenyebben a zajokra, ezért a 100 Mbit/s sebességű Ethernet két külön kódolási lépést alkalmaz. A kódolás első fázisa a 4B/5B nevű kódolási módszerrel, második fázisa pedig az átviteli közegre (réz vagy optikai) jellemző vonali kódolással történik.
4B/5B kódolás –minden 4 bits adat 5-bit adattá kódolódik –Az 5-bit kód úgy van megválasztva, hogy legfeljebb egy kezdő 0-t és legfeljebb 2 lezáró 0-t tartalmaz –Így soha nem fordul elő háromnál hosszabb összefüggő 0 sorozat –A kapott 5-bit kód NRZI szerint kerül átvitelre –80%-os hatékonyság érhető el (Manchester kódolás –Az órajel és a bináris adat NRZ kódjának XOR-ja kerül átvitelre –csak 50%-os hatékonyságú )
100BASE-TX
A 100BASE-TX változat 4B/5B kódolást használ, amely után összekeverést és többszintű átvitel (Multi-Level Transmit, MLT-3) kódolást végez..
Az ábrán négy hullámforma látható. Az első hullámformánál az időablak közepén nincs átmenet, ami bináris nulla értéket jelez. A második hullámformánál az időablak közepén átmenet látható, itt tehát bináris egyeseket kódoltunk. A harmadik hullámforma egy váltakozó bináris sorozat kódja. A negyedik változat azt szemlélteti, hogy a jelváltozások egyeseket, a vízszintes vonalak pedig nullákat jeleznek
A ábrán a 100BASE-TX érintkezőkiosztása látható. Érdemes észrevenni, hogy két külön adási és vételi útvonal létezik, ahogy a 10BASE- T esetében is. A 100BASE-TX fél-duplex módban 100 Mbit/s, duplex módban pedig 200 Mbit/s sebességű adatátvitelre képes. A duplex működés az Ethernet hálózatok sebességének növekedésével egyre fontosabbá válik.
100BASE-FX
A réz alapú Fast Ethernet bemutatásakor egy optikai változat iránt is felmerült az igény. Az optikai szálas változatra elsősorban gerinchálózati célokra volt szükség, vagyis emeletek és épületek közötti összeköttetésekhez, ahol a rézkábelek használata előnytelen; továbbá erősen zajos területek hálózati lefedettségének biztosításához. A 100BASE-FX-et ezeknek az igényeknek a kielégítésére szánták.
A 100BASE-FX azonban soha nem vált sikeressé a réz- és optikai kábel alapú Gigabit Ethernet megjelenése miatt. A Gigabit Ethernet szabványok ma már uralják a gerinchálózati telepítések, a nagysebességű összeköttetések és az általános infrastrukturális megoldások piacát.
A 100-Mbps Fast Ethernet réz és üvegszál alapú változatainak időzítése, keretfomátuma és átvitele azonos. A 100BASE-FX rendszer az ábrán látható NRZI kódolást használja.
A legfelső jelalakban nincs jelváltás, ami bináris 0-t jelez. A második hullámformánál az időablakok közepén látható átmenetek bináris egyeseket jeleznek. A harmadik hullámforma egy váltakozó bináris sorozatot kódol. A harmadik és a negyedik hullámforma kiválóan szemlélteti, hogy az átmenet hiánya bináris nullát, megléte pedig bináris egyet jelez.
A gyakorlatban ST vagy SC csatlakozókkal ellátott optikai szálpárokat használnak. A 100BASE-FX különálló adási (Transmit, Tx) és vételi (Receive, Rx) útvonalai összesen 200 Mbit/s sebességű átvitelt tesznek lehetővé.
Fast Ethernet architektúrája
A Fast Ethernet összeköttetések általában egy állomás és egy hub vagy kapcsoló kapcsolatát biztosítják. A hubokat többportos ismétlőként kezeljük, míg a kapcsolók többportos hidaknak számítanak. Az összeköttetések az UTP átviteli közeg korlátai miatt legfeljebb 100 méteresek lehetnek.
Egy 1-es osztályú ismétlő akár 140 bitidőnyi késleltetést is vihet a rendszerbe. Minden olyan ismétlő, amely kétféle Ethernet-megvalósítás között biztosít kapcsolatot, 1-es osztályúnak számít.
A 2-es osztályú ismétlőknek kisebb, legfeljebb 92 bitidőnyi késleltetéssel kell dolgozniuk, ezek ugyanis a bejövő jeleket azonnal továbbítják az összes portjukra, átfordítást nem végeznek. A kisebb késleltetés elérése érdekében a 2-es osztályú ismétlők csak azonos jelzést használó szegmensekhez csatlakozhatnak.
Ahogy a 10 Mbit/s sebességű, úgy a 100 Mbit/s sebességű változatoknál is lehetőség van az architektúrára vonatkozó szabályok egy részének módosítására, bár a 100BASE-TX esetében ennek megtétele erősen ellenjavallt. A 2-es osztályú 100BASE-TX ismétlők közötti kábelek hossza legfeljebb 5 méter lehet. A Fast Ethernet hálózatokban gyakran találni fél-duplex módban üzemelő összeköttetéseket, ugyanakkor használatuk előnytelen, magát a jelzési sémát ugyanis duplex működésre tervezték.
A következő ábrán az egyes architektúráknál érvényes, a kábelek hosszára vonatkozó korlátok láthatók. A 100BASE-TX összeköttetések ismétlő nélkül legfeljebb 100 méteres távolság áthidalására alkalmasak. Kapcsolókkal ez a távolság kitolható. A legtöbb Fast Ethernet hálózat tartalmaz kapcsolót, más szóval kapcsolt.
4B/5B A kódolt jelnek nincs egyenkomponense, viszont a sávszélessége megnő. Egy lehetséges kódolási táblázat:
MLT-3 Az MLT-3 (Multi Level Transmit) kódolás.A kódolási szabály: A kódoló egy négy állapotú ciklikus működésű automata. Az automata állapotaihoz rendre a vonali jel következő értékeit rendeljük: -1,0,1,0. Az automata 1-es továbbításakor a következő állapotba lép, 0 továbbításakor állapota nem változik. A kódolás sávszűkítő, az "alapfrekvencia" a bitidő negyede lesz.
NRZ NRZ - Non Return to Zero - Nullára vissza nem térő, azaz mindig az a feszültség van a vonalon, amit az ábrázolt bit határoz meg. Ez a leginkább gyakori, "természetes" jelforma.
Ha egy bit 1-es, akkor a feszültség teljes bit idõ alatt H szintû, ha 0-ás, akkor L szintû. Két vagy több egymás utáni 1-es bit esetén a feszültség megszakítás nélkül H-ban marad a megfelelõ ideig, az egyesek között nem tér vissza 0-ra. Nem túl jó megoldás, mert : magas egyenfeszültség összetevõje van (V/2), nagy sávszélességet igényel 0Hz-tõl (ha csak csupa 1-est vagy csupa 0-át tartalmaz a sorozat) az adatátviteli sebesség feléig (ha sorozat: ).
RZ Return to Zero - Nullára visszatérõ. A nulla a "nyugalmi állapot", 1 bitnél a bitidő első felében a +V, a második felében a jel visszatér a 0-ra:
Az NRZ kódoláshoz képest vannak előnyei: egyenfeszültség összetevője csak V/4, ha az adat csupa 1-est tartalmaz, akkor is vannak jelváltások (szinkronizáció). A legrosszabb a sávszélesség igénye: az maga az adatátviteli sebesség (ha az adatfolyam csupa 1-est tartalmaz). Bárkiben felmerülhet, hogy mi a helyzet a sok nullát tartalmazó sorozat esetében, hiszen ekkor sincsenek jelváltások, azaz a szinkronizáció problémás. Ilyen esetben azt a megoldást választják, hogy az adó pl. minden öt egymást követő nulla után egy 1 értékû bitet szúr be, amit a vevő automatikusan eltávolít a bitfolyamból.
NRZI Non Return to Zero Invertive: Nullára nem visszatérő, "megszakadásos". A 0 bitnek nulla szint felel meg. Az 1 értékû bithez vagy nulla vagy +V szint tartozik a következő szabály szerint: ha az előző 1- eshez nulla szint tartozott, akkor +V lesz, ha az előző 1-eshez +V tartozott, akkor 0 szint lesz a bithez rendelt feszültség. 0 bitet követő 1 értékű bit mindig +V feszültségű.
Ez a módszer az NRZ kisebb sávszélességét kombinálja a szinkronizálást biztosító kötelező jelváltásokkal, sok nulla esetén itt is használható a bitbeszúrás.