Rendszerek energiaellátása 1. előadás

Slides:



Advertisements
Hasonló előadás
Gyakorló feladatsor – 2013/2014.
Advertisements

Nagyépületek nagy megbízhatóságú villamos energiaellátása
GÉP - MUNKA – ENERGIA - TELJESÍTMÉNY
GÉP - MUNKA – ENERGIA - TELJESÍTMÉNY
Energia a középpontban
Energiatakarékos otthon
Készítette:Eötvös Viktória 11.a
Hogyan jut el az áram a lakossághoz?
Megújuló energiaforrások.
Geotermikus energia A geotermikus energia a Föld belső hőjéből származó energia. A Föld belsejében lefelé haladva kilométerenként átlag 30 °C-kal emelkedik.
Elektromos alapismeretek
A jövő és az energia Mi lesz velem negyven év múlva ? Mivel fogok közlekedni ? Fázni fogok otthon vagy melegem lesz ?
Készítette: Gáti-Kiss Dániel Témakör: Energiagazdálkodás
Környezet- és emberbarát megoldások az energiahiányra
Energiahálózatok és együttműködő rendszerek
Rendszerek energiaellátása 3.előadás
Elektrotechnika 8. előadás Dr. Hodossy László 2006.
2. AZ ENERGETIKA ALAPJAI.
Az energia fogalma és jelentősége
Az alternatív energia felhasználása
Az alternatív energia felhasználása
Elektromágneses indukció, váltakozó áram
megújuló ENERGIÁK Iskola: Vak Bottyán János Általános Iskola
Energiatermelés? Energia-átalakítás! Nap – hő – elektromos – kémiai
Megújuló energiaforrások
Áramköri alaptörvények
Megújuló energiaforrások: Szélenergia
Megújuló energiaforrások
Elektromos áram.
Fogyasztók az áramkörben
Magyarországi vezetékes szállítás fő vonalai
Megújuló energiaforrások – Lehetőségek és problémák
A villamosenergia-rendszer alapfogalmai
Üzemzavarok fajtái (Zárlatok és a Túlterhelés)
A magyar villamosenergia-rendszer és irányítása
szakmai környezetvédelem megújuló energiák 1.
Civin Vilmos MVM Zrt. „Klímacsúcs” Budapest, február 27. Klímaváltozás és egy állami tulajdonú villamos társaság.
Villamos energetika I. Dr
Az elektromos áram.
Elektromos áram, áramkör, ellenállás
Villamos energia hálózatok
Hő és áram kapcsolata.
Az az atomerőművek energiatermelése, biztonsága és környezeti hatásai
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
Energetikai gazdaságtan
Készítette: Gáspár Lilla G. 8. b
Energetikai gazdaságtan
Rendszerek energiaellátása 1. előadás
Készítette: Gáspár Lilla G. 7. b osztályos tanuló
Rézkábel hibái.
Decentralizált energiaellátás
Villamos teljesítmény, munka, hatásfok
Az alternatív energia felhasználása
Vértesi Erőmű átállítása szénről biomassza tüzelésűre
Elektromos áram, áramkör
Műszaki és informatikai nevelés 5. osztály
Az alternatív energia felhasználása
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
Város energetikai ellátásának elemzése
© Gács Iván (BME) Energetikai gazdaságtan Villamosenergia-szállítás költsége.
A mértékegységet James Prescott Joule angol fizikus tiszteletére nevezték el. A joule a munka, a hőmennyiség és az energia – mint fizikai mennyiségek.
Az alternatív energia felhasználása Összeállította: Rudas Ádám (RUARABI:ELTE)
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA ENERGIAELLÁTÁS FAZEKAS ANDRÁS ISTVÁN.
GÉP - MUNKA – ENERGIA - TELJESÍTMÉNY
Az ellenállás Ohm törvénye
Az energetika Ismétlés.
Elektromágneses indukció
Az elektromos áram.
Rendszerek energiaellátása 8. előadás
Energiaforrásaink.
Előadás másolata:

Rendszerek energiaellátása 1. előadás Energia szolgáltatók (EON), Ipari szakmai felügyelet,  Magyar Energia Hivatal (MEH), Nagy és kisfogyasztók. A leggyakoribb energia szolgáltatási hibák Teljes feszültség kimaradás (számítógépek) Feszültség letörések Feszültség csúcsok A villamos energia minőségi problémái Harmonikus torzítás (Fogyasztói hiba) Megoldás: jó tervezés, szűrés Feszültség kimaradások (Szolgáltató  Fogyasztó) áramkimaradás-termelés kiesés) félvezetőgyártás  termelési veszteség, papírgyártás  hosszú újraindítási idő Megoldás: redundancia, alternatív tápellátási út, UPS, tervezett karbantartási eljárások Feszültség ingadozások Feszültség letörések és emelkedések (Hálózati hiba) Tranziensek (Nagyfrekvenciás események, rövid lefolyásúak, induktív kapacitív elemek ki-be kapcsolásakor, villámcsapásból származó) Megoldás: védelmek alkalmazása

Rendszerek energiaellátása 1. előadás Az energiaellátás alapfogalmai 1. Akkumulátor Tölthető áramforrás, villamos energia kémiai energiává alakul, majd áram kivételkor vissza. Ipari méretekben nem alkalmas energia tárolására. 2. Alállomás Villamos hálózati csomópont, azonos feszültségszintű hálózati elemeket kapcsolókkal, szakaszolókkal, míg különböző feszültségszinteket transzformátorok beépítésével kapcsolnak össze. Itt mérik az egyes vezetékekben áramló teljesítményeket és az ellátás minőségi jellemzőit. 3. Áram Töltések (elektronok, ionok) rendezett irányú mozgása, mely feszültségkülönbség hatására jön létre zárt áramkörben. 4. Áramerősség A vezető bármely keresztmetszetén áthaladó töltésmennyiség és az idő hányadosa. Mértékegysége: [A] amper Két végtelen hosszú elhanyagolható keresztmetszetű 1 méter távolságban lévő vezetőben 2·10-7 newton erőt hoz létre.

Rendszerek energiaellátása 1. előadás 5. Áramszolgáltató A fogyasztói igényeket közvetlenül kiszolgáló szervezetek, melyek az energiát a nagykereskedőktől vásárolják és a végfelhasználók felé értékesítik. 6. Elektrofilter Porleválasztó berendezés, ez erőművek füstgázaiból a porrészecskék elektrosztatikus úton történő leválasztására szolgál. 7. Energia Fizikai munkavégző képesség. Munka - energia rokon fogalmak, az energia a munkavégzés lehetőségét, a munka a munkavégzésre fordított energia mennyiségét jelenti. Az energia a teljesítmény és az idő szorzata. A villamos energetikában [KWh] 8. Energiafajták Kémiai Tüzelőanyag kémiai energiája > hőenergia > mechanikai > villamos energia Atomenergia Hőenergia Helyzeti Mechanikai Elektromágneses tér

Rendszerek energiaellátása 1. előadás 9. Energiaforrások Hagyományos Megújul ó szén, kőolaj, földgáz, nukleáris szél, nap, geotermikus, vízi, hullám, stb. 10. Erőmű Villamosenergia ipari méretekben való előállítására szolgáló létesítmény. A primer energiahordozó szerint, valamint az átalakítás technológiája szerint lehetnek: Hőerőművek (szén, kőolaj, gáztüzelésű, atom, gázturbinás) megújuló energiaforrással működő 11. Erőművek üzemmódjai Alaperőmű Paks Menetrendtartó Hőerőművek Csúcserőmű Gyorsindítású gázturbinás erőmű 12. Feszültség A villamosság egyik alapmennyisége: [V] A villamosenergia iparban használt értékei: 0,4kV 6kV, 10kV, 20kV, 35kV, 120kV, 220kV, 400kV, 750kV

Rendszerek energiaellátása 1. előadás 13. Fogyasztó Olyan berendezés amely elektromos energiát valamilyen más energiává alakit át. Mechanikai energiává Kémiai energiává Hőenergiává Fényenergiává Villanymotor Akkumulátor Fűtőberendezések Izzólámpa, fénycső 14. Forgótartalék Azonnal rendelkezésre álló tartalék teljesítmény, az üzemben lévő generátorok ki nem használt teljesítménye, a rendszerben lévő ingadozások és a frekvencia szabályozására. 15. Hálózat A villamos energiát az előállítás helyéről a fogyasztókig eljuttató vezetékek és berendezések összessége. A feszültség szintjei szerint lehetnek: Alaphálózat: 400kV, 220kV Főelosztó hálózat: 120kV Elosztó hálózat: 20kV, 10kV, 0,4kV

Rendszerek energiaellátása 1. előadás 16. Háromfázisú áram A villamos energia előállításának, szállításának, felhasználásának alapja. A háromfázisú átvitel során a három vezetéken azonos feszültségű de a periódusidő harmadával eltolt áram folyik. 17. Hidegtartalék Tartalék teljesítmény, az erőművekben üzemen kívül lévő berendezések összteljesítménye amelyek az rendszerirányító utasítására bármikor elindíthatók 18. Hőenergia A hőmérséklet emelésekor felvett, csökkentésekor leadott energia mennyisége. Joule [j] 19. Katalizátor Kémiai reakciókat gyorsító berendezés. Széntüzelésű erőművekben a káros nitrogénoxidot bizonyos fémek segítségével (amelyek a folyamatban nem vesznek részt) szétbontják. 20. Kőolaj Évmilliókkal ezelőtt elpusztult élőlények bomlási anyagaiból keletkezett és tároló kőzetekben felhalmozódott ásványi anyag.

Rendszerek energiaellátása 1. előadás 21. Megújuló energiaforrás Olyan energiahordozók amelyek felhasználásuk során nem fogynak el, alkalmazásukkal a környezet nem szennyeződik, és a Föld energiakészlete nem csökken. Vízenergia, szél, nap, geotermikus, biomassza, árapály, stb. Alternatív erőműveknek is nevezzük. 22. Napelem A nap energiáját fotoelektromos úton alakítja villamos energiává Alapelve hogy két félvezető határrétegére eső fény feszültségkülönbséget hoz létre a félvezetőben. 23. Napenergia Napsugárzás formájában a földre jutó energia. (Naperőmű) Hogy is van ez? 24. Primer tartalék Tartalék teljesítmény, a a forgó tartaléknak a frenvencia változása esetén automatikusan felhasználásra kerülő része. Értéke a teljes villamosenergia rendszer összteljesítményének 1%. 25. Szekunder tartalék Tartalék teljesítmény, a forgó tartalékból és a gyorsindítású (15percen belül) nyílt ciklusú gázturbinák teljesítményéből tevődik össze.

Rendszerek energiaellátása 1. előadás 25. Szén Évmilliókkal ezelőtt elpusztult növényi maradványokból képződött a földfelszín alatt, nagy nyomáson levegő kizárása mellett. Minőségét a kora határozza meg. 26. Vízerőmű A víz helyzeti energiáját hasznosító erőmű típus. Átfolyó és tározós rendszerű lehet. Előnyei: a gyors indíthatóság, rugalmas terhelhetőség, minimális üzemeltetési költség. Hátrányok: Létesítéséhez földrajzi adottságok kellenek, jelentős beruházási költség. 27. Zárlat A szigetelés meghibásodása miatt két vagy több vezető között létrejövő nem szándékolt kapcsolat. A zárlati hely ellenállása jóval kisebb a normál terhelésnél így jelentősen nagyobb áram folyhat a megengedettnél. Megoldás: zárlatvédelem.

Rendszerek energiaellátása 1. előadás Köszönöm a megtisztelő figyelmet!