Adattípusok, adatsorok jellegadó értékei

Slides:



Advertisements
Hasonló előadás
2. előadás.
Advertisements

I. előadás.
Petrovics Petra Doktorandusz
STATISZTIKA II. 1. Előadás
Gazdaságelemzési és Statisztikai Tanszék
Regionális elemzések módszerei
Grafikus ábrázolási módszerek
A szórás típusú egyenlőtlenségi mutatók
Földrajzi összefüggések elemzése
Mérési pontosság (hőmérő)
Gazdaságelemzési és Statisztikai Tanszék
Közlekedésstatisztika
Adatfeldolgozás.
4. előadás.
3. előadás.
3. előadás.
A középérték mérőszámai
Microsoft Excel Függvények VI..
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Matematikai alapok és valószínűségszámítás
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Függvények.
Statisztika.
Készítette: Horváth Zoltán (2012)
Leíró statisztika III..
Valószínűségszámítás
Többváltozós adatelemzés
Adatleírás.
I. előadás.
Statisztikai alapfogalmak
Viszonyszámok A viszonyszám két egymással logikai kapcsolatban álló statisztikai adat hányadosa V= A/B V: a viszonyszám A:a viszonyítás alapját képező.
Számtani és mértani közép
Középértékek – helyzeti középértékek
Adattípusok, adatsorok jellegadó értékei
4. előadás.
A számítógépes elemzés alapjai
Regionális elemzések módszerei
Konzultáció – Leíró statisztika október 22. Gazdaságstatisztika.
A számítógépes elemzés alapjai
Oszlopdiagram dr. Jeney László egyetemi adjunktus
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
A nagyvárosok, mint az európai térszerkezet kitüntetett pontjai
A területi polarizáltság mérése: Duál mutató
A területi koncentráció elemzése
Szóródási mérőszámok, alakmutatók, helyzetmutatók
Regionális elemzések módszerei
2. előadás Viszonyszámok
Térbeli gazdasági folyamatok tényezőkre bontása
Dr. Varga Beatrix egyetemi docens
Speciális szóródás: Koncentráció
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
Területi adatbázis-kezelés, jellegadó értékek
A területi polarizáltság mérése: Duál mutató
Adatfeldolgozási ismeretek műszeres analitikus technikusok számára
dr. Jeney László egyetemi adjunktus Regionális elemzések módszerei
Adatsorok típusai, jellegadó értékei
Nagyváros–vidék egyenlőtlenség Kelet-Közép-Európában
5. előadás.
A szórás típusú egyenlőtlenségi mutatók
Területi eloszlások összevetése: Hoover index
A leíró statisztikák alapelemei
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
Rangsoroláson és pontozáson alapuló komplex mutatók
Területi egyenlőtlenségek grafikus ábrázolása: Lorenz-görbe
4. előadás.
Mérési skálák, adatsorok típusai
A területi koncentráció mérése és a kitüntetett helyzetek
Előadás másolata:

Adattípusok, adatsorok jellegadó értékei dr. Jeney László egyetemi adjunktus jeney@caesar.elte.hu Regionális és környezeti elemzési módszerek I. BME Regionális és környezeti gazdaságtan mesterszak (MSc) 2013/2014, II. félév BCE Gazdaságföldrajz és Jövőkutatás Tanszék

Mérési skálák

Statisztikai fogalmak Sokaság: A megismerni kívánt, megfigyelt egységek halmaza Ismérvek: A sokaság jellemzésére, részekre bontására alkalmas vizsgálati szempontok Területi elemzések: legalább 2 ismérv Területi ismérv Változók: időbeli, mennyiségi, minőségi ismérvek Adatok jól csoportosíthatók az összehasonlíthatóságuk szerint  mérési (vagy adat) skálák rendszere

A mérési skálák rendszere Tulajdonság Sajátosságok Jellemző példák Arány xa / xb Megkülönböztetés, sorrend, különbség, arány Van elméleti minimum, azonos előjelű Népességszám, jövedelem, utasforgalom Intervallum xa – xb Megkülönböztetés, sorrend, különbség Pozitív és negatív értékek Vándorlási különbözet Ordinális (sorrendi) xa ≥ xb Megkülönböztetés, sorrend Nehezen mérhető, csak sorrendbe állítható Sorrendek, rangok, eltérő funkcionális szintek Nominális xa ≠ xb Megkülönböztetés Nem számszerű Név, születési hely, nem

Mérési skálák hierarchiája Mindegyik mérési skála rendelkezik az alatt lévő tulajdonságaival A „hierarchia csúcsán” az arányskála áll Legteljesebb összehasonlításra ad lehetőséget Mérési skála meghatározza a matematikai-statisztikai módszereket Brazil válogatott nem 63X jobb mint a magyar 0 átlagú adatsort nem lehet az átlag %-ában megadni Többváltozós vizsgálatoknál: Többféle mérési skála, de azonos mérési skálájú adatokra van szükség  adat-transzformáció

Mérési skálák transzformációja Leggyakrabban: intervallum- vagy arányskálán mért jellemzők ordinális adatskálára átalakítása (pl. komplex mutatóknál: rangsorolás) Azonos értékek: rangszámok is azonosak Páratlan számú (pl. 3) adat egyezése: középső rangszám (8., 9. és 10. helyett 9., 9. és 9.) Páros számú (pl. 2) adat egyezése: rangszámok átlaga (4. és 5. helyett 4,5. és 4,5.) Nincs holtversenyben elsőség 1. és 2. helyett 1,5. és 1,5 (1. és 1. helyett)

Adatsorok 2 fő típusa: nem fajlagos és fajlagos mutatók Nem fajlagos (abszolút) mutatók Pl. népességszám, GDP, személygépkocsik száma, terület, városlakók száma Jelölése: xi azaz x abszolút mutató értéke adott „i” régióban Fajlagos mutatók (relatív vagy származtatott mutatók) Pl. egy főre jutó GDP, ezer lakosra jutó személygépkocsik, népsűrűség, városlakók aránya Lehet százalékos részesedés is: pl. városlakók aránya Jelölése: yi azaz y fajlagos mutató értéke adott „i” régióban Általában 2 nem fajlagos mutató hányadosa, pl. GDP és népesség (ritkán 2 fajlagos mutató hányadosa, pl. megyei GDP/fő az országos átlagos GDP/fő %-ában) Esetükben súlyozni kell (pl. súlyozott átlag, súlyozott szórás) A súly a fajlagos mutató képletének nevezőjében van, jelölése fi azaz f súly értéke adott „i” régióban Súly gyakran népességszám, de nem mindig

Nem fajlagos – fajlagos mutatók valamint a súly közötti átszámítások Ha a nem fajlagos mutató (GDP) és a súly (népességszám) ismert A fajlagos mutató (GDP/fő): a nem fajlagos mutató és a súly hányadosa Ha a nem fajlagos (GDP) és a fajlagos mutató ismert (GDP/fő) A súly (népesség): a nem fajlagos és a fajlagos mutató hányadosa Ha a fajlagos mutató (GDP/fő) és a súly (népesség) ismert Nem fajlagos mutató (GDP): a fajlagos mutató és a súly szorzata

Adatsorok jellegadó értékei

Adatsorok jellegadó értékei Középértékek Számtani átlag / súlyozott számtani átlag Mértani átlag Helyzeti középértékek (módusz, medián) Szélső értékek Maximum Minimum Adatsor terjedelme és szórása (átvezet a területi egyenlőtlenségi mutatók felé) Terjedelem-típusú mutatók Szórás-típusú mutatók

Középértékek: átlagok Számtani átlag Az eredeti számok helyébe helyettesítve azok összege változatlan n db adat (xi) Excel  fx= ÁTLAG() Súlyozott számtani átlag n db fajlagos adat (yi) Súly (fi): a fajlagos mutató nevezőjében szereplő adat Mértani átlag Az eredeti számok helyébe helyettesítve azok szorzata változatlan

Helyzeti középértékek Medián Az az érték, aminél kisebb és nagyobb adatok száma egyenlő (felező pont) Extrém adatokat tartalmazó adatsorok esetében érdemes használni Kvantilisek: kvartilis (negyedelő), kvintilis (ötödölő), decilis (tizedelő), percentilis (századoló) Medián/átlag: egyenlőtlenségi mutató (minél kisebb, annál nagyobb az egyenlőtlenség) Excel  fx= MEDIÁN() Módusz („divatos érték”) A legtöbbször előforduló érték Lehet többmóduszú (többcsúcsú) adatsor is Excel  fx= MÓDUSZ()

A szélső értékek és a terjedelem típusú egyenlőtlenségi mutatók Maximum Az adatsor legnagyobb értéke (xmax) Excel  fx= MAX() Minimum Az adatsor legkisebb értéke (xmin) Excel  fx= MIN() Alapja a terjedelem típusú egyenlőtlenségi mutatóknak Range (szóródás terjedelme) Range-arány (adatsor terjedelme) Relatív range

Súlyozatlan relatív terjedelem kiszámításának lépései (abszolút mutatóknál) Ki kell számítani az adatsor maximumát (függvényvarázsló: max) Ki kell számítani az adatsor minimumát (függvényvarázsló: min) Ki kell vonni a maximális értékből a minimálist (ez a terjedelem) Ki kell számítani az adatsor (sima) átlagát (függvényvarázsló: átlag) El kell osztani a terjedelmet az átlaggal

Súlyozatlan relatív terjedelem kiszámítása Excelben 1 xa xb 2 1. régió 24 10 3 2. régió 4 3. régió 5 4. régió 12 6 maximum =MAX(B2:B5) =MAX(C2:C5) 7 minimum =MIN(B2:B5) =MIN(C2:C5) 8 terjedelem 24 =B6-B7 0 =C6-C7 9 átlag 10 =ÁTLAG(B2:B5) 10 =ÁTLAG(C2:C5) relatív terjedelem 2,4 =B8/B9 0 =C8/C9

Súlyozott relatív terjedelem kiszámításának lépései (fajlagos mutatóknál) Ki kell számítani az adatsor maximumát (függvényvarázsló: max) Ki kell számítani az adatsor minimumát (függvényvarázsló: min) Ki kell vonni a maximális értékből a minimálist (ez a terjedelem) Ki kell számítani az adatsor súlyozott átlagát El kell osztani a terjedelmet a súlyozott átlaggal

Súlyozott relatív terjedelem kiszámítása Excelben F G 1 ya fa xa yb fb Xb 2 1. régió 24 =B2*C2 10 =E2*F2 3 2. régió 4 3,5 14 35 3. régió 4,5 45 5 4. régió 12 6 összeg 50 100 7 max. 24 =MAX(B2:B5) 10 =MAX(E2:E5) 8 min. 0 =MIN(B2:B5) 10 =MIN(E2:E5) 9 terj. 24 =B6-B7 0 =E6-E7 s. átlag 5 =D6/C6 10 =G6/F6 11 rel terj 4,8 =B9/B10 0 =E9/E10