A kábelek jellemzői.

Slides:



Advertisements
Hasonló előadás
Számítógép-hálózatok
Advertisements

LAN hálózatok Ethernet, ATM.
FDDI (Fiber Distributed Data Interface, Száloptikai adatátviteli interface)
Az információ átviteli eljárásai és azok gyakorlata
Hálózati készülékek.
A számítógép műszaki, fizikai része
Hálózati alapismeretek
HÁLÓZATOK.
Optikai kábel.
A BIZTONSÁGTECHNIKA ALAPJAI
Készítette: Bátori Béla 12.k
KRONE GmbH, Berlin. KRONE GmbH, Berlin A megvalósítható hálózatok: Beszéd célú (analóg vagy digitális) Telefon, ISDN S0, ISDN UK0, ISDN PR Voice over.
PowerPoint animációk Hálózatok fizikai rétege
Hálózati alapfogalmak, topológiák
Számítógép hálózatok.
LCS Legrand strukturált kábelezési rendszer.
KRONE elemek a struktúrált hálózatokban
Vezeték nélküli hálózatok eszközei
Hálózati architektúrák
Remembering The OSI Layers Various mnemonics have been created over the years to help remember the order of the OSI layers. Often cited are the following:
Készítette: Vasvári Zoltán
Hálózatok kábelei Takács Béla
Vezetékes átviteli közegek
Hálózatok.
Hálózatok.
HÁLÓZATOK.
Elektromos ellenállás
Az Ethernet és az OSI modell
Bevezetés az informatikába Farkas János, Barna Róbert
Hálózatok fajtái, topológiájuk, az Internet fizikai felépítése
Vezeték nélküli átvitel
10. Tétel Danyi Ádám.
OSI Modell.
 A DEC, Intel és Xerox cégek (együtt: DIX) által kidolgozott alapsávú LAN-ra vonatkozó specifikáció.  Az Ethernet hálózatok az ütközések feloldására.
Vezeték nélküli helyi hálózatok
A Hálózatok csoportosítása…
Sebesség A gépeket összekötő eszköz egyik fontos jellemzője, hogy milyen mennyiségű jel haladhat rajta keresztül 1 másodperc alatt. Ezt átviteli sebességnek.
Vezeték nélküli Interfészek
Fizikai átviteli jellemzők, átviteli módok
Ethernet – bevezetés.
Ethernet technológiák A 10 Mbit/s sebességű Ethernet.
10BASE5. A 10BASE5 10 Mbit/s sebességű átvitelre volt képes egyetlen vastag koaxiális kábeles buszon keresztül. A 10BASE5 azért fontos, mert ez volt az.
Hálózati eszközök.
Teszt minta kérdések. Az alábbiak közül melyik korlátozza az optikai alapú Ethernet sebességét? Adótechnológia Az optikai szál abszolút fényvivő kapacitása.
PC Hálózatok.
KRONE 3/98 Folie 1 KRONE –A passzív hálózat KRONE elemek a struktúrált hálózatokban Mérések Mit, miért, hogyan és mivel kell hitelesíteni? Milyen eszközök.
Hálózati alapismeretek. 2 Chuck Norris születése óta a fordulórúgások általi halálozások száma %-kal nőtt.
Hálózat továbbítás közege
Számítógépes hálózat vezérlőegységei.  Hálózati adapterkártya.  Modem.  HUB, megfelelő címre küldő elosztó eszköz.  Repeater („ismétlő”), azonos típusú.
Adatátvitel elméleti alapjai
A projekt az Európai Unió társfinanszírozásával, az Európa terv keretében valósul meg. Számítógép- hálózatok dr. Herdon Miklós dr. Kovács György Magó Zsolt.
A fizikai réteg. Az OSI modell első, avagy legalsó rétege Feladata a bitek kommunikációs csatornára való juttatása Ez a réteg határozza meg az eszközökkel.
4.Tétel: xDSL, VoIP, FTTx, NGN
Kommunikáció.
1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar VET Villamos Művek és Környezet Csoport Budapest Egry József.
Hálózatok.
Vezetékes átviteli közegek
Rézkábelek 12. tétel.
Hálózati architektúrák és Protokollok GI – 10 Kocsis Gergely
Szerver(Szolgáltató) PC LAPTOP Telefon ROUTER Wi-Fi.
A számítógépes hálózatok
Vezetékes átviteli közegek
UTP (Unshielded Twisted Pair)
Downstream Power Back Off (DPBO)
Számítógépes hálózatok
Downstream Power Back Off (DPBO)
Hálózatok.
VDSL 2 Vektorozás ELEKTR NIKA
Hálózati alapismeretek
VDSL 2 Vektorozás ELEKTR NIKA
Előadás másolata:

A kábelek jellemzői

Kérdések Mekkora átviteli sebességet lehet elérni? A kábelen elérhető bitsebesség rendkívül fontos mutató. Az átviteli sebességet nagyban befolyásolja a felhasznált vezeték típusa.

Analóg vagy digitális átvitelt fogunk végezni Analóg vagy digitális átvitelt fogunk végezni? A digitális, vagyis alapsávi átvitel és az analóg, más néven szélessávú átvitel másféle kábelt igényel.

Milyen messzire továbbítható a jel, mielőtt a csillapítás számottevővé válna? Ha a jel minősége leromlik, a hálózati készülékek képtelenek lesznek venni és értelmezni a jeleket. A csillapítás mértéke a jel által a kábelen megtett távolságtól függ. A jel romlása közvetlenül függ az átvitel távolságától és a kábel típusától.

10BASE-T A 10BASE-T esetében az átviteli sebesség 10 Mbit/s. Az átvitel típusa alapsávú, vagyis digitális. A T a csavart érpár (twisted pair) használatára utal.

10BASE5 A 10BASE5 hálózatok átviteli sebessége 10 Mbit/s. Az átvitel típusa alapsávú, vagyis digitális. Az 5-ös szám arra utal, hogy a jeleket körülbelül 500 méteres távolságra lehet eljuttatni úgy, hogy a csillapítás figyelembe vételével a vevő még képes legyen értelmezni a jeleket. A 10BASE5 hálózatokat vastagkábeles (Thicknet) hálózatoknak is szokták nevezni. A Thicknet egy hálózattípus, a 10BASE5 pedig az ezen a hálózaton használt Ethernet specifikációja.

10BASE2 A 10BASE2 hálózatok átviteli sebessége szintén 10 Mbit/s. Az átvitel típusa ezeknél is alapsávú, digitális. Az 10BASE2 megnevezésben a 2-es szám arra utal, hogy a maximális szegmensméret 200 méter, e felett a csillapítás miatt a fogadó oldal már nem biztos, hogy képes a kapott jelek helyes értelmezésére. A tényleges maximális szegmenshossz 185 méter. A 10BASE2 hálózatokat vékonykábeles (Thinnet) hálózatoknak is szokták nevezni. A Thinnet egy hálózattípus, a 10BASE2 pedig az ezen a hálózaton használt Ethernet specifikációja.

Koaxiális kábel

Leírás A koaxiális kábelek egy réz vezetőt tartalmaznak, amelyet egy rugalmas szigetelőréteg vesz körül. A központi vezető ónnal bevont alumíniumszál is lehet, az ilyen kábelek olcsóbban legyárthatók. A szigetelőanyagot egy rézfonat vagy fémfólia borítja, ami egyrészt második jelvezetékként funkcionál az áramkörben, másrészt árnyékolja a belső vezetőt. A második réteg, vagyis az árnyékolás révén a kívülről származó elektromágneses interferenciák hatása is mérsékelhető. Az árnyékoló réteget védőköpeny borítja.

Előnyök Koaxiális kábellel, ha nincs ismétlő, nagyobb távolság hidalható át, mint árnyékolt csavart érpáras (STP) kábellel, árnyékolatlan csavart érpáras kábellel (UTP) vagy árnyékolófonatos csavart érpáras (ScTP) kábellel A koaxiális kábel olcsóbb, mint az optikai kábel, és technológiája is széles körben ismert és elterjedt. Sok éven keresztül használták a telekommunikáció különféle területein, például kábeltelevíziós hálózatokban.

STP kábel

Az STP kábel az árnyékolási, kioltási és csavart érpáras megoldások előnyeit ötvözi. Minden vezetékpár fémfóliával van burkolva. A két érpárt emellett egy közös fémszövet vagy fémes fólia is körbefogja. A kábel általában 150 ohmos. Az elsősorban Token Ring hálózatokban használt STP kábelek csökkentik a kábelen belüli elektromos zajokat, mint amilyen az érpárok közötti csatolás és áthallás.

Az STP a kábelen kívülről eredő elektromos zajok – mint az elektromágneses interferencia (EMI) és a rádiófrekvenciás interferencia (RFI) – hatását is csökkenti. Az STP kábelek az UTP kábelek számos előnyével és hátrányával rendelkeznek. Az STP minden külső interferenciatípus ellen hatásosabb védelmet biztosít. Az STP ugyanakkor drágább és nehezebben telepíthető, mint az UTP.

ScTP

Egy újfajta hibrid UTP az árnyékolófonatos UTP (Screened UTP, ScTP), amely árnyékolófóliás csavart érpáras (foil screened twisted pair, FTP) kábel néven is ismert. Az ScTP az UTP-vel egyező módon 100 ohmos. Sok kábeltelepítő és gyártó STP névvel illeti az ScTP kábeleket.

Leírás Az STP és az ScTP kábelek fém árnyékolását mindkét végződésen földelni kell. Ha a megfelelő földelés elmarad, vagy a kábel bármely pontján megszakad az árnyékolás, az STP és az ScTP kábeleken komoly zajproblémákkal kell számolni. A kábel ilyenkor azért válik rendkívül érzékennyé, mert az árnyékolás antennaként viselkedve zavaró jeleket gyűjt össze. A jelenség természetesen mindkét irányba működik. A jó árnyékolás nemcsak a kívülről származó elektromágneses hullámokat gátolja meg abban, hogy zajokat keltsenek az adatátviteli vezetékeken, de az elektromágneses hullámok kisugárzását is megakadályozza. Ezek a hullámok megzavarhatnák más készülékek működését.

Az STP és ScTP kábelek hossza a jelek ismétlése nélkül nem lehet akkora, mint más hálózati átviteli közegeké (koaxiális kábel, optikai kábel). A szigetelés és az árnyékolás mennyiségét növelve jelentősen megnő a kábel mérete, súlya és ára is. Az árnyékoló anyagok miatt a végpontokat is nehezebb szerelni – ez különösen gyengébb képzettséggel rendelkező szakembereknek jelenthet problémát. Mindettől függetlenül az STP és az ScTP kábeleket bizonyos területeken továbbra is használják, főként ahol erős EMI és RFI források találhatók a kábelek közelében.

UTP kábel

Leírás Az UTP kábeleknek mind a nyolc rézvezetéke szigetelőanyaggal van körbevéve. Emellett a vezetékek párosával össze vannak sodorva. Ennél a kábeltípusnál a vezetékek páronkénti összesodrásával csökkentik az elektromágneses (EMI) és rádiófrekvenciás (RFI) interferencia jeltorzító hatását. Az árnyékolatlan érpárok közötti áthallást úgy csökkentik, hogy az egyes érpárokat eltérő mértékben sodorják. Akárcsak az árnyékolt csavart érpáras (STP) kábelnél, az UTP esetében is pontos előírások vannak arra, hogy hosszegységenként hány sodrásnak kell lennie.

Az UTP kábel rengeteg előnnyel rendelkezik Az UTP kábel rengeteg előnnyel rendelkezik. Könnyű telepíteni, és más adatátviteli közegekhez képest olcsó. A méterre vetített költség tekintetében lényegében az UTP számít a legolcsóbb LAN-kábelezésnek. Legfontosabb előnye mégis a mérete. Kis külső átmérőjének köszönhető, hogy az UTP nem tölti meg a kábelcsatornákat olyan hamar, mint más vezetékek. Ez igen fontos szempont, különösen akkor, ha régebbi épületbe telepítünk hálózatot. Ezen felül, ha az UTP kábelt RJ-45-ös csatlakozókkal szereljük, a lehetséges hálózati zavarforrások körét nagymértékben szűkítjük, és stabil csatlakozásokat tudunk kialakítani.

A csavart érpáras kábel használatának hátrányai is vannak A csavart érpáras kábel használatának hátrányai is vannak. Az UTP kábel más hálózati adatátviteli közegeknél érzékenyebb az elektromos zajra és interferenciára, emellett a jelerősítők közötti távolság az UTP kábelek esetében kisebb, mint a koaxiális kábeleknél. Korában az UTP kábelről azt tartották, hogy viszonylag alacsony adatátviteli sebességet biztosít. Ez ma már nem igaz, sőt, a csavart érpár tekinthető a leggyorsabb átvitelt biztosító réz alapú átviteli közegnek.

A sikeres kommunikáció előfeltétele, hogy a vevő képes legyen értelmezni az adó által küldött jeleket. A hálózat-összekötő készülékek között az alábbi kábelkapcsolat-típusokat használják. A, A kapcsoló és a számítógép hálózati kártyájának portját egy úgynevezett egyeneskötésű kábel csatolja össze. B, A két kapcsoló portjait keresztkötésű kábel kapcsolja össze. C, Azt a kábelt amely a számítógép soros portjára csatlakozó RJ-45-ös adaptert a forgalomirányító vagy kapcsoló konzolportjához köti, konzolkábelnek nevezzük.

Kábelfelismerés A kábelek kialakítása a kapcsolat típusától és a szükséges érintkezőkiosztástól függ. Lásd a , a és a ábrát. Ha a kábel nincs beépítve a falba, akkor két végét könnyen egymás mellé tudjuk helyezni. Ezt követően vizsgáljuk meg a két RJ-45-ös csatlakozóban a vezetékek színét. Ehhez helyezzük a kábeleket tenyerünkre, egymás mellé, a rögzítőpöcökkel lefelé, a kábel végeit magunktól elfelé fordítva. Az egyeneskötésű kábelek mindkét végén azonos a színek sorrendje. Ha keresztkötésű kábelt vizsgálunk, akkor az egyik végen az 1-es és a 2-es érintkezőre csatlakozó vezetékek a másik végen a 3-as és a 6-os érintkezőre vezetnek és viszont. Ennek oka az, hogy a küldésre és a vételre használt érintkezők eltérő pozíciókon találhatók. A konzolkábeleknél a színsorrendnek balról jobbra nézve a kábel túlsó végén pontosan fordítottnak kell lennie