Mozgásminták.

Slides:



Advertisements
Hasonló előadás
Lorem ipsum dolor sit amet, consectetur Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore Közlekedési.
Advertisements

Mozgáselemzés használata 1. 2 Módszer vizsgálata.
1 Az önértékelés mint projekt 6. előadás 1 2 Az előadás tartalmi elemei  A projekt fogalma  A projektek elemei  A projekt szervezete  Projektfázisok.
Hullámmozgás. Hullámmozgás  A lazán felfüggesztett gumiszalagra merőlegesen ráütünk, akkor a gumiszalag megütött része rezgőmozgást végez.
AZ ELEKTRONIKUS KÉPZÉS MINŐSÉGBIZTOSÍTÁSA INFORMATIKA A FELSŐOKTATÁSBAN DEBRECEN DR. ZÁRDA SAROLTA GÁBOR DÉNES FŐISKOLA.
Az erő def., jele, mértékegysége Az erő mérése Az erő kiszámítása Az erő vektormennyiség Az erő ábrázolása Támadáspont és hatásvonal Két erőhatás mikor.
In vivo mozgásvizsgáló rendszerek I.. Vizsgálómódszerek csoportosítása Vizsgálatok élő-halott szöveteken:ENGEDÉLYKÖTELES Vizsgálat módja szerint:  In.
BEST-INVEST Független Biztosításközvetítő Kft.. Összes biztosítási díjbevétel 2004 (600 Mrd Ft)
TEROTECHNOLÓGIA Az állóeszközök újratermelési folyamata.
Gazdasági informatika - bevezető
vizuális megismerés – vizuális „nyelv” vizuális kultúra
EN 1993 Eurocode 3: Acélszerkezetek tervezése
Összevont munkaközösség vezetői és igazgatótanácsi értekezlet
Az „első lépés” TÁMOP
3. tétel.
2. előadás Viszonyszámok
Vezetékes átviteli közegek
Összeállította: Horváth Józsefné
Áramlástani alapok évfolyam
Komplex természettudomány 9.évfolyam
A mozgás kinematikai jellemzői
TÁMOP E-13/1/KONV „A 21. század követelményeinek megfelelő, felsőoktatási sportot érintő differenciált, komplex felsőoktatási szolgáltatások.
Egyszerű kapcsolatok tervezése
A közigazgatással foglalkozó tudományok
A KINOVEA mozgáselemző rendszer használata
Kockázat és megbízhatóság
Vizsgálómódszerek.
Komplex természettudomány 9.évfolyam
Levegőtisztaság-védelem 6. előadás
 : a forgásszög az x tengelytől pozitív forgásirányában felmért szög
CSOPORT - A minőségellenőrök egy megfelelő csoportja
Az Országos Egészségfejlesztési Intézet fejlesztési projektjei az iskolai egészségfejlesztés területén DR. TÖRÖK KRISZTINA.
1993-as közoktatási törvény
Mechanikai alapfogalmak
Mechanikai alapfogalmak
A mozgási elektromágneses indukció
Komplex természettudomány 9.évfolyam
Hipotézisvizsgálat.
Munka és Energia Műszaki fizika alapjai Dr. Giczi Ferenc
 : a forgásszög az x tengelytől pozitív forgásirányában felmért szög
2. Koordináta-rendszerek és transzformációk
Pontrendszerek mechanikája
Egy test forgómozgást végez, ha minden pontja ugyanazon pont, vagy egyenes körül kering. Például az óriáskerék kabinjai nem forgómozgást végeznek, mert.
KINEMATIKA (MOZGÁSTAN).
Szerkezetek Dinamikája
Közigazgatási alapvizsga a Probono rendszerben
Dr. habil. Gulyás Lajos, Ph.D. főiskolai tanár
CONTROLLING ÉS TELJESÍTMÉNYMENEDZSMENT DEBRECENI EGYETEM
Az elemi folyadékrész mozgása
Önkormányzati Fejlesztések Figyelemmel kísérése II.
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
Munkanélküliség.
rendellenességei, betegségei
A villamos installáció problémái a tűzvédelem szempontjából
Környezeti Kontrolling
Fröchlich-féle Bazális Stimuláció gyakorlati megközelítése
szabadenergia minimumra való törekvés.
Tájékoztatás a évi Országos Statisztikai Adatfelvételi Program (OSAP) teljesüléséről az Országos Statisztikai Tanács és a Nemzeti Statisztikai Koordinációs.
Egymáson gördülő kemény golyók
TÁRGYI ESZKÖZÖK ELSZÁMOLÁSA
Futás oktatása, Futóiskola gyakorlatok
SZAKKÉPZÉSI ÖNÉRTÉKELÉSI MODELL I. HELYZETFELMÉRŐ SZINT FOLYAMATA 8
Járműtelepi rendszermodell 2.
I. HELYZETFELMÉRÉSI SZINT FOLYAMATA 3. FEJLESZTÉSI FÁZIS 10. előadás
Zsugorkötés Kötés illesztéssel zsugorkötés
Áramlástan mérés beszámoló előadás
Vektorok © Vidra Gábor,
A geometriai transzformációk
Hagyományos megjelenítés
A tehetséggondozás kihívásai
Előadás másolata:

Mozgásminták

Definíciók Az izmok csoportosan működnek Az izomműködés egy, de általában több izom mozgatásában nyilvánul meg (agonista-antagonista izmok) Mozgásminta: adott mozgást létrehozó izmok térben és időben összerendezett működése Elemi: egy ízület adott irányban végzett mozgatása, végrehajtó izmok térben és időben egymást követő aktiválása genetikailag meghatározott Összetett: elemi mozgásmintákból épül fel, aktiválási sorrend mozgástanulás során alakul ki Mozgáskészlet: elemi és összetett mozgásminták összessége, tanulással bővíthető

Izomtónus Izmok mindig feszített állapotban vannak, ez az izomfeszülés az izomtónus (Galeneusz) Egyensúlyi hossz: izom feszülése nulla (kivett izom hossza) Nyugalmi hossza: az a hosszúság, amiből a legnagyobb aktív feszülés érhető el Feszített hossz (nyúlás, rövidülés): a legnagyobb aktív feszüléskor az izom hossza Izomtónus változhat: Idegállapot Hormonális állapot Betegségek

Mozgásformák Testtartás Helyzetváltoztatás Helyváltoztatás

Testtartás Definíció: az egész test vagy egyes testrészek egymáshoz viszonyított térbeli helyzetének megtartását. Törzs és izmainak meghatározó szerepe Típusai: Állás Ülés Fekvés

Testtartás - Állás Függőleges testhelyzet (evolúció) Tartóoszlop a gerinc (négyes görbület) ábra Ángyán: Az emberi test mozgástana

Testtartás - Állás Keletkező igénybevételek: Nyomóerő Nyíróerő (porckorong, csigolyaívek)

Testtartás - Állás A test hossztengely: Sarokfelé elcsúszik „Nagy has” problémája Boka-átadási pont - ív

Testtartás - Állás Teherátadás a lábon (kettős görbület): Lúdtalp Harántsüllyedés

Testtartás - Ülés Szerepe fokozódik Ergonómiailag helyes ülés Fej előre hajtása

Testtartás - Fekvés Legkisebb terhelés Megfelelő alátámasztás Izmok elernyedésének fokozása Porckorong feltöltődése Csípőízület optimális helyzetének biztosítása

Helyzetváltoztatás Definíció: a test egyes részeinek egymáshoz viszonyított helyzete változik meg (súlypont mozgása minimális) Típusai: Beszéd (hangképzés, artikuláció, testbeszéd) Kézzel végzett mozgások (írás) Karemelés Lábemelés

Helyváltoztatás Definíció: A test súlypontja nagymértékben elmozdul a globális koordináta rendszerben, azaz az egész testnek a tér valamely pontjához viszonyított helyváltoztatása Típusai: Járás Futás Megállás Sportmozgások

Járás Leggyakoribb helyváltoztató mozgás Típusa: Séta (van kettős támaszfázis) Nincs kettősfázis (kivitelezhetetlen) Futás (Van repülő fázis, azaz van olyan pillanat, amikor egyik láb sem érintkezik a talajjal) Motoros, ciklikus viselkedés Befolyásoló tényezők: Alkat (testméretek) Tanulás (kisgyermekkor vagy újratanulás) Hangulat (központi idegrendszer izgalmi állapota) Központi idegrendszeri elváltozások Ortopédiai elváltozások

Járás szakaszai kettős támasz jobb láb lendítő fázis támaszfázis egyláb sarok ütés teljes talp második gördülés felemelés lábujj első gyorsító középső lassító Definíciókat elmondani!!! Fontos

Járás Ciklikus, szimmetrikus mozgás, mert egyes szakaszai pontosan ismétlődve követik egymást. Járáselemzés alapjai: lépésciklus, ami a végtag teljes mozgásperiódusa, azaz a végtag sarokütésétől a következő sarok- ütéséig tart, szakaszai: Támaszfázis (támaszkodási fázis) Lendítő fázis (lengési fázis) lépés, ami az egyik végtag sarok-ütésétől a másik végtag sarokütésig tart [Szendrői M (szerk): Ortopédia]

Járás kinematikai jellemzése Távolság-idő paraméterek: Lépéshossz Lépésciklus hossz Lépésszélesség Lépésciklus szélesség Szakaszok időbeni hossza Lépés szélesség Lépésciklus szélesség Lépés hossz Lépésciklus hossz

Járás kinematikai jellemzése Szögjellegű paraméterek: Boka, térd, csípő különböző síkokban mérhető szögei (vetített szögek) Testszegementumokat jellemző vektorok egymással bezárt szögei (relatív szög) 180 + b 180 - a Térdszög Csípőszög

Járás kinematikai jellemzése Szögjellegű paraméterek: Egyes szegmentumoknak a globális vagy a szegmentumhoz rögzített lokális koordináta rendszer tengelyeivel bezárt szöge (Euler szögek) (abszolút szögek) g Comb szöge

Járás kinetikai jellemzése A reakcióerő időbeni változása F1: Sarokütéskor F2: Teljes talp F3: Sarok felemelésekor

Járásmód A járás egyénre jellemző kivitelezése: Egyensúly megtartása Két oldal közötti koordináció Járás ritmusának megtartása (közel azonos ismétlés)-járás szabályossága

Vizsgálómódszerek csoportosítása Vizsgálatok élő-halott szöveteken:ENGEDÉLYKÖTELES Vizsgálat módja szerint: In vitro vizsgálatok (halott szöveteken történő vizsgálat) In vivo vizsgálatok (élő embereken történő vizsgálatok) Vizsgálat típusa szerint: Statikus Dinamikus

Mozgáselemzés

Mozgáselemzés A különböző mozgásformák vizsgálata Célja: Motoros képesség felmérése; Mozgástanulás, motoros memória ellenőrzése; Speciális mozgásmintáinak elemzése; Mozgászavarok, mozgáskorlátozások diagnózisa; A mozgásterápia és rehabilitáció eredményeinek ellenőrzése; A rendszeres testedzés szomamotoros hatásainak ellenőrzése; Mozgástani tudományos kutatás.

Fajtái Kinematika: anyagi pont helyzetének meghatározása a tér valamely viszonyítási rendszerében (pld. Descartes-féle derékszögű koordináta-rendszerben) időfüggvényekkel;

Fajtái Kinematika: a különböző mozgásformák leírása a tér valamely viszonyítási rendszerében (pld. Descartes-féle derékszögű koordinátarendszerben), időfüggvényekkel; Kinetika: a különböző mozgásokat létrehozó erők vizsgálata, elemzése; Reakcióerő és talpnyomáseloszlás mérése az idő függvényében

Fajtái Kinematika: a különböző mozgásformák leírása a tér valamely viszonyítási rendszerében (pld. Descartes-féle derékszögű koordinátarendszerben), időfüggvényekkel; Kinetika: a különböző mozgásokat létrehozó erők vizsgálata, elemzése; Egyéb: izmok aktivitásának vizsgálata (elektromyográfia), reakcióidő mérése. m. vastus lat. -400.0 -200.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 time [msec] [mV]

Mozgáselemzés összefoglalása Célja; Típusa; Alapja; Eszközei; Mérés menete; Mért jellemzők.

Fényképezés Célja: Testhelyzetek tanulmányozása, egyensúlyi állapotok meghatározása, állapotrögzítés, dokumentálás; Muybridge: Locomation of Horses (Stanford Egyetem)

Dinamikus mozgáselemzés (Mozgásvizsgálat) Célja: mozgás közben a mozgás kinematikai jellemzőinek, a mozgást létrehozó erők meghatározása. Rendszerei: Kinematikai mérések Optikai-alapú rendszerek; Elektromágnes-alapú rendszerek; Ultrahang-alapú rendszerek; Kinetikai mérések: Erő- és talpnyomás-eloszlást mérő egységek; Egyéb: Izmok aktivitását rögzítő elektromiográf (EMG);

Elektromágnesalapú rendszerek Alapfeltételezés: Az emberi test szegmentjei merevek, az összes mozgás az ízületekben jön létre. Alapja: A mérőrendszer az adó középpontjában rögzített koordinátarendszerben rögzíti az érzékelők térbeli helyzetét és koordináta-tengelyek körüli elfordulást. Ha az érzékelő elmozdulás-mentesen rögzített a testszegmentumra, akkor az érzékelő mozgása és a szegmentum mozgása megegyezik.

Mérés eszközei Különböző hatástávolságú adókat a mérendő személy közelében az érzékelőket elmozdulás-mentesen a szegmentumra kell helyezni. Adatgyűjtő egység rögzíti az érzékelők térbeli helyzetét és koordináta-tengelyek körüli elfordulást. nagy hatótávolságú adó adatgyűjtő egység érzékelő közepes hatótávolságú adó

Speciális elemek Jelölő keret: ha a testszegmentumra (lapocka, láb) érzékelő nem helyezhető, a mozgás megállítása után a jelölő keret segítségével a testszegmentum helyzete rögzíthető;

Speciális elemek Jelölő ceruza: a globális koordináta-rendszerben meghatározott elmozdulásokból és elfordulásokból a testszegmentumoknak saját, lokális koordináta-rendszerében történő elfordulása koordináta transzformációval számítható. Ehhez a kalibráció fázisában a testszegmentumok lokális koordináta-rendszerét jelölő ceruza segítségével definiálni kell.

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban történik, hogy az ízületek, a testszegmentumok anatómiai pontjai kitapinthatók legyenek; Az érzékelőknek a testszegmentumokra kétoldali ragasztóval vagy gumiövvel elmozdulás- mentes rögzítése; Ha a testszegmentumok elfordulásainak lokális koordináta-rendszerben történő számításához, a kalibrálás fázisában jelölő ceruzával az iránypontok;

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban történik, hogy az ízületek, a testszegmentumok anatómiai pontjai kitapinthatók legyenek; Az érzékelőknek a testszegmentumokra kétoldali ragasztóval vagy gumiövvel elmozdulás-mentes rögzítése; Ha a testszegmentumok elfordulásainak lokális koordináta-rendszerben történő számításához, a kalibrálás fázisában jelölő ceruzával az iránypontok; Az előre meghatározott mozgás (járás, karemelés, stb.) alatt az érzékelők térbeli helyzete és elfordulásának mérése és rögzítése a globális koordináta-rendszerben;

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban történik, hogy az ízületek, a testszegmentumok anatómiai pontjai kitapinthatók legyenek; Az érzékelőknek a testszegmentumokra kétoldali ragasztóval vagy gumiövvel elmozdulás-mentes rögzítése; Ha a testszegmentumok elfordulásainak lokális koordináta-rendszerben történő számításához, a kalibrálás fázisában jelölő ceruzával az iránypontok; Az előre meghatározott mozgás (pld járás, karemelés, stb.) vagy szabad mozgás alatt az érzékelők térbeli helyzete és elfordulásának mérése és rögzítése a globális koordináta-rendszerben; Vállízületi és láb mozgások esetén a mozgás megállítása után a jelölő egység segítségével három – általában anatómiai pont - térbeli helyzetét rögzítése.

Elektromágnesalapú rendszerek Mérés frekvenciája: 20-120 Hz Kereskedelmi forgalomban kapható rendszerek: ISOTRACK Ascension Mért jellemzők: Érzékelők térbeli helyzete és elfordulása a globális koordinátarendszerben.

Előnyök és hátrányok Optikaialapú rendszereknél nagyobb pontosság, 3.5 mm nagyságú mérési hiba (hitelesítés cadaver vállízületeken végezve); A mérés pontosságát a fém módosítja (vasbeton épületek) A mérőrendszer hatótávolsága korlátozott (1 – 3 m); Egymáshoz közel elhelyezett érzékelők interferenciát okoznak; A testre szerelt érzékelők módosíthatják a mozgást (5-6 perces gyakorlás után nincs eltérés); A bőrmozgásokat is rögzíti; Egyes testszegmentumok térbeli helyzetének meghatározásához a mozgást meg kell állítani; Anatómiai pontok térbeli helyzete nem határozható meg; Egyéb kiegészítő elemek csatlakoztatása, szinkronizálása nehézkes.

Ultrahangalapú rendszer Módszerei: Egyedi érzékelős mérési módszer Egymérőfejes ultrahan-alapú mérési módszer (mérőhármasokat használ)

Mérés eszközei egyedi, aktív (ultrahang-jelet kibocsátó) adók egyedi, ultrahangot kibocsátó aktív adók egyedi, aktív (ultrahang-jelet kibocsátó) adók három fogadó érzékelőt (vevőt) tartalmazó mérőfej központi egység mérőfej három, ultrahang jelet fogadó érzékelővel (vevővel) központi egység

Érzékelők térbeli koordinátájának meghatározása Mérőfej látja az adókat; Az adó és a mérőfej egy érzékelője (vevő) közötti távolság a mért terjedési időből és az ultrahang sebességéből számolható; Mindhárom távolság hasonlóan számítható; A távolságokból (Di) és az mérőfej érzékelőinek térbeli koordinátáiból (xi,yi,zi) az adók (xa,ya,za) térbeli koordinátái háromszögelés módszerével számolhatóak. x1,y1,z1 x2,y2,z2 z y x D1 D2 D3 xa,ya,za x3,y3,z3

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban történik, hogy az ízületek, a testszegmentumok anatómiai pontjai kitapinthatók legyenek: Az adókat a kijelölt anatómiai pontokra elmozdulás-mentesen kétoldali ragasztó tappancsokkal kell rögzíteni; Az előre meghatározott mozgás ciklus alatt (járás, karemelés, kartolás és húzás) a kijelölt anatómiai pontok térbeli koordinátáit a mérést vezérlő program rögzíti. egyedi adók

Egyedi érzékelős ultrahangalapú mérési módszer Mérés frekvenciája: 20-100 Hz Kereskedelmi forgalomban kapható rendszerek: ZEBRIS CMS 10 ZEBRIS CMS 20 Mért jellemzők: Adók térbeli helyzete

Előnyök és hátrányok Optikaialapú rendszereknél nagyobb pontosság, 5.0 mm nagyságú mérési hiba (hitelesítés élő személyeken járás közben); A bőrmozgásokat is rögzíti; Csak a mérőfej által látható anatómiai pontok vonhatók be; A mérőrendszer hatótávolsága korlátozott (1 – 3 m); Egymáshoz közel elhelyezett érzékelők interferenciát okoznak; A testre szerelt érzékelők módosíthatják a mozgást (5-6 perces gyakorlás után nincs eltérés).

Ultrahangalapú rendszer Módszerei: Egyedi érzékelős mérési módszer Egymérőfejes ultrahangalapú mérési módszer (mérőhármasokat használ)

Alapok Alapfeltételezés: Alapja: Az emberi test szegmentjei merevek, az összes mozgás az ízületekben jön létre; Alapja: Minden merev test mozgása a térben leírható, ha három pontjának (alappont-hármas) térbeli koordinátáját a mozgás minden időpillanatában ismerjük. A vizsgált merev test bármely pontjának koordinátája az adott test három pontjának (alappont-hármas) koordinátájából számítható, ha az alappont-hármas által meghatározott lokális koordináta- rendszerben a vizsgált test vizsgálandó pontjának helyvektora ismert. A vizsgálandó pontok térbeli helyzetét a lokális koordináta-rendszerben kalibráció fázisában kell megadni [Kocsis, 2003].

Mérés eszközei A három ultrahang jelet kibocsátó adót tartalmazó mérőfej; A három fogadó érzékelőt (vevőt) tartalmazó mérőhármast a testszegmentumra; Jelölő ceruza anatómia pontok definiálásához a kalibrációs fázisban. érzékelő (vevő) merev lap mérőfej három, ultrahangot kibocsátó adóval mérőhármas, három ultrahang jelet fogadó érzékelővel központi egység adatgyűjtő egység jelölő ceruza

Speciális elemek Polisztirol övre szerelt mérőhármas: A mérőhármasokat elmozdulás-mentesen, az izmok mozgásának kiküszöbölésére polisztirol öv segítségével rögzítjük a merev testszegmentumokra; mérőhármas polisztirol öv

Speciális elemek Pontra rögzített mérőhármas: Egyes testszegmentumok alakja miatt a mérőhármasok rögzítése csak speciális módon oldható meg. Például a lapocka mozgásainak rögzítésére a bőrmozgások kiküszöbölésére, a folyamatos mozgás biztosításához a mérőhármast EKG vizsgálathoz használt harangra célszerű szerelni. A harang által létrehozott vákuummal a mérőhármas vállcsúcsra rögzíthető. mérőhármas EKG harang a vákuum létrehozásához

Mérés elrendezése A három adóval rendelkező mérőfej a mérendő személy előtt (felső végtag vizsgálatok) [Illyés] a mérendő személy mögött (alsó végtag vizsgálatok) [Kocsis] helyezkedik el. A mérőhármasok a testszegmentumokra kerültek rögzítésre.

Kalibráció Az alappont-hármas (jelen esetben az egyes testszegmentumokra rögzített mérőhármasok három- három pontja) által meghatározott lokális koordináta-rendszerben a testszegmentumok tetszőleges pontok helyvektorának megadása. ro x h

Mérés x2,y2,z2 x1,y1,z1 Az érzékelő és a mérőfej mindhárom adója közötti távolság és az adók térbeli koordinátájának ismeretében az érzékelő térbeli koordinátája a mérés minden időpillanatában a háromszögelés módszerével számítható. [Kocsis] x3,y3,z3 xa,ya,za h

Mérés Mozgás során az alappont-hármasok mindenkori térbeli koordinátáiból és a vizsgálandó anatómiai pontok a lokális koordináta-rendszerben megadott helyvektoraiból a vizsgálandó anatómiai pontok térbeli koordinátái számíthatók. A fent leírt módszerrel tetszőleges számú anatómiai pont térbeli koordinátája határozható meg [Kocsis]. xa,2,ya,2,za,2 xa,1,ya,1,za,1 ro xa,3,ya,3,za,3 xo , yo, zo

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban, hogy az anatómiai pontok kitapinthatók legyenek; Polisztirol övvel vagy vákummal a három aktív érzékelőt tartalmazó mérőhármas rögzítést a megfelelő testszegmentumokra;

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban, hogy az anatómiai pontok kitapinthatók legyenek; Polisztirol övvel vagy vákummal a három aktív érzékelőt tartalmazó mérőhármas rögzítést a megfelelő testszegmentumokra; Kalibrálás fázisában ultrahang-alapú jelölő ceruzával a kijelölt anatómiai pontok helyvektorának megadása a mérőhármasok által meghatározott lokális koordináta- rendszerben;

Mérés menete A vizsgálat férfiak esetén félmeztelenül, nők esetén melltartóban, hogy az anatómiai pontok kitapinthatók legyenek; Polisztirol övvel vagy vákummal a három aktív érzékelőt tartalmazó mérőhármas rögzítést a megfelelő testszegmentumokra; Kalibrálás fázisában ultrahang-alapú jelölő ceruzával a kijelölt anatómiai pontok helyvektorának megadása a mérőhármasok által meghatározott lokális koordináta-rendszerben; Az előre meghatározott mozgásciklus alatt (karemelés, meghatározott sebességen történő járás, stb.) a kijelölt anatómiai pontok térbeli koordinátáinak rögzítése a mérést vezérlő programmal.

Egymérőfejes ultrahang-alapú mérési módszer mérőhármassal Mérés frekvenciája: 20-100 Hz Kereskedelmi forgalomban kapható rendszerek: ZEBRIS CMS-HS Mért jellemzők: Anatómiai pontok térbeli koordinátái

Előnyök és hátrányok Nagy pontossága, gyakorlott személy esetén 1mm, gyakorlatlan személy esetén 3 mm alatti mérési hiba, mérési hiba (hitelesítés élő személyeken több mozgás közben); Kapott eredmények gyors feldolgozása; A bőrmozgás kiküszöbölése; Különböző kiegészítő elemek kapcsolása, szinkronizálása megoldott; A mérőrendszer hatótávolsága korlátozott (1 – 3 m); A testre szerelt érzékelők módosíthatják a mozgást (5-6 perces gyakorlás után nincs eltérés).

Reakcióerő és talpnyomáseloszlás mérése Alapja: A talaj-reakcióerő mérése a Newton III. törvényén (akció-reakció törvénye) alapul. A test a testsúllyal nyomja a talajt, és ezzel az erővel szemben azonos nagyságú, de ellentétes irányú erő hat a testre, ami talajreakció-erő. Eszköze: Különálló, vagy futószalagba épített erőplatók, amelyek mérhetik csak a talaj-reakcióerő nagyságát, vagy a talpnyomáseloszlást is (pedográf).

Mérés menete A statikus egyensúly megtartásának vizsgálatakor a vizsgált személy meghatározott módon áll a mérőlapon meghatározott ideig (általában 30- 60 másodperc); Járásvizsgálatok esetén a földbe süllyesztett – egy vagy két erőplatón/ pedográfon a vizsgált személy általa választott sebességgel (természetes, lassú, gyors) átsétál a lapon;

Mérés menete Speciális mozgás végrehajtása a lapon A statikus egyensúly megtartásának vizsgálatakor a vizsgált személy meghatározott módon áll a mérőlapon meghatározott ideig (általában 30-60 másodperc); Járásvizsgálatok esetén a földbe süllyesztett – egy vagy két erőplatón/ pedográfon a vizsgált személy általa választott sebességgel (természetes, lassú, gyors) átsétál a lapon; Speciális mozgás végrehajtása a lapon

Mérés menete A statikus egyensúly megtartásának vizsgálatakor a vizsgált személy meghatározott módon áll a mérőlapon meghatározott ideig (általában 30-60 másodperc); Járásvizsgálatok esetén a földbe süllyesztett – egy vagy két erőplatón/ pedográfon a vizsgált személy általa választott sebességgel (természetes, lassú, gyors) átsétál a lapon; Speciális mozgás végrehajtása a lapon A futószalagba beépített erő platón/pedográfon a vizsgált személy meghatározott, állandó sebességgel jár minimum 3-5 percig a futószalagon.

Reakcióerő és talpnyomáseloszlás mérése Mérés frekvenciája: 100-240 Hz Kereskedelmi forgalomban kapható rendszerek: ZEBRIS KISTLER, stb.

Mért jellemzők Talajreakció erő nagysága és időbeni alakulása; Talpnyomás eloszlás ábra.

Izomaktivitás mérése Alapja: Az izom összehúzódásakor elektromos pontenciálváltozás mérhető. Eszköze: Elektromiográf, ami a két detektor (érzékelő) közötti elektromos potenciált méri. Típusai: Tűs (egyes izmok, mélyizmok, fájdalmas, sterilizálás, nehezen eltalálható); Felületi Elvezetés módja: Monopolár vagy bipolár; Érzékelő alakja: Kör, ellipszis, négyzetes alakú. monopolár, köralakú felületi érzékelő

Mérés menete Az izomhas megkeresése általában UH-gal; A referencia- vagy földpont rögzítése, ami elektromosan semleges csont (homlokcsont, könyökízület, patella); A bőr ellenállásának csökkentése (a bőr szőrtelenítése, az elhalt hámsejtek speciális dörzspapírral való eltávolítása és a bőr alkoholos lemosása); Elektródák felhelyezése. Az elektródák közötti távolság tetszőleges, leggyakrabban 10 mm; izomhasra helyezett érzékelőpár referenciapont

Mérés menete Az izomhas megkeresése általában UH-gal; A referencia- vagy földpont rögzítése, ami elektromosan semleges csont (homlokcsont, könyökízület, patella); A bőr ellenállásának csökkentése (a bőr szőrtelenítése, az elhalt hámsejtek speciális dörzspapírral való eltávolítása és a bőr alkoholos lemosása); Elektródák felhelyezése. Az elektródák közötti távolság tetszőleges, leggyakrabban 10 mm; Adott mozgás közben a kijelölt izmok potenciál változásának rögzítése.

Mérés frekvenciája: 500- 2000 Hz Izomaktivitás mérése Mérés frekvenciája: 500- 2000 Hz Mért jellemzők: Elektromiogram, ami a két detektor közötti elektromos potenci- álváltozás, az idő függvényében

Előnyei, hátrányai Tűs elektródák használata esetén a mozgás nehezen kivitelezhető, de egyedi izmok is mérhetőké; Felületi elektródák használata esetén csak a felületi izmok, izomcsoportok vizsgálhatók, a keresztellenőrzés különösen fontosé; A feldolgozás nehézkes, de komplex vizsgálat végezhető.

Erőmérések Statikus vizsgálatok Ángyán: Az emberi test mozgástana

Reakcióidő mérése Reakcióidő: az adott inger közlése és a válasz között eltelt idő (koncentráló képesség) Inger: Hang Fényinger Válasz: Nyomógomb Terület: Sportorvoslás (anaerob átmenet) Idegrendszert érintő betegségek Ángyán: Az emberi test mozgástana