Származtatott termékek és reálopciók

Slides:



Advertisements
Hasonló előadás
Tőzsdei befektetések A tőzsde nyilvános, központosított és szervezett piac. Árutőzsde Értéktőzsde - értékpapírtőzsde - devizapiac Hatással van napi életünkre.
Advertisements

Az opció fogalma Put-call paritás Opciós befektetési stratégiák
Határidős és opciós ügyletek
Határidős kereskedés a Budapesti Értéktőzsdén
Vállalati pénzügyek alapjai
Mivel a bankszámla kamata általában igen alacsony, érdemes körülnézned a különböző megtakarítási/befektetési lehetőségek között. MIELŐTT VÁLASZTASZ A.
A kamatlábak lejárati szerkezete és a hozamgörbe
A diákat készítette: Matthew Will
Hitelfelvételi problémák
Árfolyamkockázat és a vállalati szféra
Opciós piacok. Meghatározás Egy termék jövőbeli vételére vagy eladására szóló jog, előre rögzített áron és időbenEgy termék jövőbeli vételére vagy eladására.
Részvényopciós díjak jellemzői
Rózsa Andrea – Csorba László
KOCKÁZAT – HOZAM.
Mivel a bankszámla kamata általában igen alacsony, érdemes körülnézned a különböző megtakarítási/befektetési lehetőségek között. MIELŐTT VÁLASZTASZ A.
A kötvény árfolyama és hozama
Határidős kereskedés a Budapesti Értéktőzsdén
Határidős és opciós ügyletek segédanyag tavaszHatáridős és opciós ügyletek2 IV. Opciók értéke lejárat előtt A lejárat pillanatai tehát igen egyszerűek,
A partneri kapcsolatok értékelése hálózati együttműködés esetén
Vállalatok pénzügyi folyamatai
A diákat készítette: Matthew Will
Az opciók értékelése Richard A. Brealey Stewart C. Myers MODERN VÁLLALATI PÉNZÜGYEK Panem, 2005 A diákat készítette: Matthew Will 21. fejezet McGraw Hill/Irwin.
Fazakas Gergely Részvények árazása
Befektetési döntések Bevezetés
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
Vállalati pénzügyek alapjai
A TŐKEKÖLTSÉG. Tőkeköltség a tőkepiacról  Tőkepiac: pénzt cserélünk pénzre  Pl. pénzt adok egy vállalatnak valamilyen jövőbeli (várható) kifizetésekért.
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
2013. őszBefektetések I.1 Származtatott termékek Határidős ügyletek Csere (swap) ügyletek Opciók.
2013. tavaszSzármaztatott termékek és reálopciók1 Részvényportfóliók fedezése Hatékony portfóliók –β paraméter megmutatja mennyire érzékenyen reagálnak.
2015. tavaszSzármaztatott termékek és reálopciók1 III. Fedezeti ügyletek Határidős ügylet segítségével rögzíthető a jövőbeli ár –árfolyamkockázat kiküszöbölése.
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
Származtatott termékek és reálopciók BMEGT35ML tavasz Vizsgakövetelmények A vizsga az alábbiakban felsorolt tételekből összeállított kérdésekből,
2015. tavaszSzármaztatott termékek és reálopciók1 III.4. Határidős kamatlábügyletek Kamatlábak változásából eredő kockázatok fedezésére. 16.
2013. tavaszSzármaztatott termékek és reálopciók1 III. Fedezeti ügyletek Határidős ügylet segítségével rögzíthető a jövőbeli ár Nyitott pozíció, kitettség.
Tőzsdei spekuláció Dr. Bóta Gábor Pénzügyek Tanszék.
Tőzsdei spekuláció Dr. Bóta Gábor Pénzügyek Tanszék.
2013. tavaszSzármaztatott termékek és reálopciók1 II.2. Határidős árfolyamok A lejáratkor a határidős és az azonnali ár megegyezik. Milyen kapcsolat van.
2013. tavaszSzármaztatott termékek és reálopciók1 IV. Opciók értéke lejárat előtt A lejáratkori opcióértékek egyszerűen megadhatók, de a fő kérdés a lejárat.
Opciós ügyletek. Az egyszerű spekulációs ügyletek kockázata igen nagy, ezért nem mindenki vállalja. A fedezeti ügyletkötők számára sem előnyös a határidős.
2013. tavaszTőzsdei spekuláció1 Határidős árfolyamok.
A beruházások kockázata Beruházási döntések folyamata ♦ Tőkeköltségvetés- a pénzáramok meghatározása ♦ Megfelelő módszer kiválasztása a pénzáramok értékeléséhez.
2015. őszBefektetések I.1 V. Optimális portfóliók.
Származtatott termékek és reálopciók tavasz 2. Zh tájékoztató A zárthelyi időpontja és helyszíne: április 22. hétfő QA407, az alábbi beosztás.
2013. tavaszSzármaztatott termékek és reálopciók1 II. Határidős árfolyamok A lejáratkor a határidős és az azonnali ár megegyezik. Milyen kapcsolat van.
BME Üzleti gazdaságtan konzultáció - szigorlat Andor György.
Származtatott termékek
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Vállalati pénzügyek II.
Befektetés és finanszírozás Határidős és opciós ügyletek
II. Határidős árfolyamok
V. Befektetői stratégiák opciós ügyletekkel
Pénzügy szigorlat Üzleti gazdaságtan
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
V. Befektetői stratégiák opciós ügyletekkel
V. Befektetői stratégiák opciós ügyletekkel
Haladó Pénzügyek Vezetés szervezés MSC I. évfolyam I
Üzleti gazdaságtan Andor György.
Hol tartunk… IV. Hozamok és árfolyamok
Származtatott termékek és reálopciók
Tőzsdei spekuláció tavasz Tőzsdei spekuláció.
Hol tartunk… IV. Hozamok és árfolyamok
Andor György ~ Pénzügyek
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Hol tartunk… IV. Hozamok és árfolyamok
Haladó Pénzügyek Vezetés szervezés MSC I. évfolyam I
Előadás másolata:

Származtatott termékek és reálopciók Opciók értékelése A lejáratkori opcióértékek egyszerűen megadhatók, de a fő kérdés a lejárat előtti érték, árfolyam. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók LC értéke lejáratkor KT LP értéke lejáratkor PT KT PT KT SC értéke lejáratkor PT KT SP értéke lejáratkor PT 2013. tavasz Származtatott termékek és reálopciók

Opciók értéke lejárat előtt A lejáratkori opcióértékek egyszerűen megadhatók, de a fő kérdés a lejárat előtti érték, árfolyam. Ez csak bonyolult összefüggésekkel adható meg, így a témát leegyszerűsítve tárgyaljuk. Miért bonyolult? „Szokásos” eljárásunk, a várható pénzáramlás becslése, majd az opció kockázatához illeszkedő tőke alternatíva költséggel történő diszkontálás nem vezet megoldásra. Az opció kockázata folyamatosan változik. Érték = Árfolyam Hatékony árazódást tételezünk fel. c és p érték is, (egyensúlyi) árfolyam is. 2013. tavasz Származtatott termékek és reálopciók

Egyszerűsített megközelítés – a binomiális modell Mivel egy opció értéke közvetlenül nem megragadható, így olyan részek kombinációjával próbáljuk közelíteni, amelyek értéke ismert, vagy könnyen megadható. A binomiális modellben lényegében az alaptermék árfolyam-alakulásának tulajdonságait egyszerűsítjük azért, hogy a lejáratkori árfolyam végtelen lehetséges értéke helyett csak néhánnyal kelljen kalkulálnunk. A részvény-árfolyamok alapvető tulajdonságait kell egyszerűbb formára hoznunk várható hozam + bolyongás 2013. tavasz Származtatott termékek és reálopciók

A binomiális modell egyszerűsítése: diszkrét binomiális modell t P t P folytonos modell P0 P0 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Mindezek után olyan portfóliót állítunk össze, amelynek ugyan része az opció is, de mind a portfólió egésze, mind a többi része egzaktul megadható. Végül a portfólió és az „egzakt rész” különbségeként adódik az opció értéke. Olyan portfóliót állítunk össze, amelynek T időpontbeli értéke biztosan ismert. Ezt úgy csináljuk, hogy a portfólióban lévő részvény értékének változását „lefedezzük” az opció értékének változásával. Ismerjük tehát a portfólió jövőbeli értékét, amiből megadhatjuk a jelenbeli értékét. Mivel ismerjük P0-t, az egyetlen ismeretlen az opció jelenlegi (c vagy p) értéke lesz. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Tekintsünk egy egyszerű példát! jelenlegi részvényárfolyam (P) legyen 10$ vételi opció kötési árfolyam K=11$ lejárat T=1év, európai típusú a részvényárfolyam 1 év alatt 12,5$-ra növekedhet, vagy 8$-ra csökkenhet részvény: 12,5$ opció: 1,5 $ 12,5$ részvény: 10$ opció: c 10$ részvény: 8$ opció: 0 8$ 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Állítsunk össze a lejáratkori részvényárfolyamtól független értékű portfóliót! Célunkat x db részvény megvásárlásával és 1 db (ezen részvényre vonatkozó) vételi opció kiírásával (eladási kötelezettség vállalásával) próbáljuk elérni. 1/3 részvényből és 1 vételi opció kiírásából álló portfóliónk értéke 1 év múlva: 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Tudjuk tehát, hogy a portfólió jövőbeli értékét. 2,67$ Egy ilyen portfólió összeállításának költsége – a portfólió jelenbeli értéke: Mindezek alapján c-t meghatározható. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Binomiális értékelés több periódus esetén Hasonló eljárás, mint egy periódus esetén. 15,625 $ 4,625 $ 12,5 $ c1 2,29 $ 10 $ 10 $ c 0 $ 0 $ 8 $ 6,4 $ 0 $ 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók A megoldás pontosításához a részidőszakok számának növelése vezet, ez azonban megnehezíti a számítást. A binomiális modell segítségével az alaptermék árfolyamváltozásának folyamata könnyen megragadható, a paraméterek változtatásával bonyolultabb folyamatok is könnyen kezelhetők (az értékelési eljárás alapelve ekkor is hasonló). 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Binomiális értékelés – eladási opciók példa: P0=50$, T=2év, KT=52$, rf=5% Kockázatmentes portfólió: x db részvény és 1 db eladási opció megvásárlása 72 $ 0 $ 60 $ 1,42 $ 48 $ 50 $ 4 $ 4,24 $ 9,52 $ 40 $ 32 $ 20 $ 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Binomiális értékelés – amerikai opciók 72 $ 0 $ 60 $ 1,42 $ 1,42 $ 48 $ 50 $ 4 $ 5,13 $ 12 $ 9,52 $ 40 $ 32 $ 20 $ 2013. tavasz Származtatott termékek és reálopciók

Általános megközelítés – a Black-Scholes modell A binomiális modellnél a diszkrét árfolyamváltozások bevezetése adta a megoldást. A folyamatos változat megoldását adja az ún. Black-Scholes-formula (képlet). A megoldáshoz vezető út szinte azonos: kockázatmentes portfólió – részvény - opció A folyamatos forma miatt a levezetés magasabb fokú matematikai eszköztárat igényel. Ezért a téma tárgyalását leegyszerűsítjük, a levezetéstől eltekintünk. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Az alap-formula a lejáratig osztalékot nem fizető részvényre vonatkozó európai vételi opció értékét (c-t) adja meg, a többi opciós pozíció értékére ebből következtetünk majd. A Black-Scholes formula szerinti c-függvény jellege: c P0 c P0-KT KT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók A Black-Scholes formula szerinti c-függvény képlete: P0 a részvény jelenlegi árfolyama K0 az opció KT kötési árfolyamának jelenértéke rf kockázatmentes kamatlábbal diszkontálva N(d) a normális eloszlású valószínűségi változó eloszlásfüggvény-értéke d-nél 2013. tavasz Származtatott termékek és reálopciók

A Black-Scholes formula szerinti c-függvény képlete: Valamekkora valószínűséggel rendelkezünk P0 értékű részvénnyel Valamekkora valószínűséggel fizetünk K0 –t érte  a részvény (az alaptermék) volatilitása, azaz a részvény időegység alatti relatív szórása, ami megegyezik az időegységre vonatkozó hozam szórásával. N(d)-k hozzávetőleg annak a valószínűségét adják, hogy PT nagyobb lesz KT -nél és az opciót lehívják. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Jegyezzük meg, hogy az opció értékét meghatározó tényezők között nem szerepel se a részvény bétája, se várható hozama. Egy opciós jogot úgy kell felfogni, hogy „kicsit” már most megvettük a részvényt, amiért „kicsit” már fizettünk is, meg később is fogunk még. A diszkontált pénzáramláson alapuló megközelítés zsákutca, mert képtelenség kifejezni a kockázatot, és így ralt-ot, mert az a részvény árfolyam-változásával és az idő előrehaladtával folyamatosan változik. (Ezért nem tudták annyi ideig megoldani.) 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Mitől függ c értéke? Nézzük meg a képlet változóit! Ha nő a akkor c értéke Részvényárfolyam (P0) nő Kötési árfolyam (KT) csökken Kamatláb (rf) nő Lejáratig hátralévő idő (T) nő Részvény volatilitása () nő 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Indokoljuk meg az egyes változók hatásának okait! A kötési árfolyam hatása szinte nyilvánvaló, a többi tényező szerepének megértéséhez az opció értékét részértékekre bontjuk szét. Belső érték Ingadozási érték Részletfizetési érték Időérték 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Belső érték Az opció azonnali lehívása eredményezné. Amennyivel mégis több az opció értéke, az ún. időérték. c P0 P0-KT KT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Ingadozási érték c P c P0-KT P0 KT E(PT) PT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók A részvényárfolyam lejáratig adódó kockázatossága pozitívan hat c értékére: c P KT P0 PT c P PT P0 KT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Az ingadozási érték tehát annál nagyobb, minél nagyobb a részvény lejáratig hátralévő időre eső változékonysága. Mitől függ ez? T-től σ-tól egészen pontosan -től KT c P P0-KT P0 PT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók PT=4 T t P P1 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók KT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Részletfizetési érték Első érzetünkkel ellentétben c értéke nem a P0-KT belső értékhez „simul”, hanem a P0-K0 ún. módosított belső értékhez. Ez azzal magyarázható, hogy az opció lehívása lényegében egy részletre történő részvényvásárlást jelent, ahol az első részlet c, a második részlet KT. KT-nek viszont csak a jelenértékét kell számolnunk, hiszen később fizetjük: 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók KT-K0 P0-KT P0-K0 c K0 KT 2013. tavasz Származtatott termékek és reálopciók

Részletfizetési érték A részletfizetési érték nyilván KT -től, rf-től és T-től függ, valamint a lehívás valószínűségétől is: c P0 c KT-K0 KT Részletfizetési érték P0-KT N(d) 1 d 2013. tavasz Származtatott termékek és reálopciók

Részletfizetési érték Összegezzük a három értékforrást! c P0 c KT-K0 Részletfizetési érték Időérték Ingadozási érték P0-KT Belső érték KT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Kötési árfolyam (KT) Részvényárfolyam (P0) Kamatláb (rf) Lejáratig hátralévő idő (T) Részvény volatilitása () Ha nő a akkor c értéke nő csökken 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók c értéke „ráérzésre”: Nagy T és nagy σ Kis T és nagy σ Nagy T és kis σ Kis T és kis σ 2013. tavasz Származtatott termékek és reálopciók

Európai eladási opciók értéke lejárat előtt – a put-call paritás Az eladási opció értékét – az ún. put-call paritás segítségével – a vételiéből vezetjük le. A paritásos összefüggés felírásához két azonos eredményű (értékű) portfóliót állítunk össze, úgy, hogy az egyikben vételi, a másikban eladási opció szerepeljen. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók LC LP PT PT KT KT KT KT PT PT KT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók KT KT-K0 K0 c p=c-P0+K0 K0 KT P0 p=c-P0 -K0 -P0 2013. tavasz Származtatott termékek és reálopciók

Részletfizetési érték (-) Részletfizetési érték (-) Vázoljuk az eladási opcióknak is a belső, a részletfizetési és az ingadozási értékét! p P0 KT Részletfizetési érték (-) Részletfizetési érték (-) KT-P0 Belső érték KT-P0 Belső érték K0 Ingadozási érték (+) Ingadozási érték (+) KT-K0 KT 1 N(d) d 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Mitől és hogyan függ p értéke? Ha nő a akkor p értéke Részvényárfolyam (P0) csökken Kötési árfolyam (KT) nő Kamatláb (rf) csökken Részvény volatilitása () nő Lejáratig hátralévő idő (T) nem egyértelmű 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Osztalékot fizető részvényekre vonatkozó vételi és eladási opciók értéke lejárat előtt 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Eddigi értékelési módszerünkön csupán P0 értelmezésén keresztül kell változtatnunk. Korrigáljuk a lejáratig fizetendő osztalékkal. (diszkontráta: rf vagy ralt?) A paritásos összefüggés is megváltozik: 2013. tavasz Származtatott termékek és reálopciók

Amerikai típusú vételi opciók értéke lejárat előtt Bármikor lehívhatjuk, ezért a jog birtokosa előtt folyamatosan két lehetőség kínálkozik: Lehívja Realizálja a (pillanatnyi) belső értéket: P0-KT Nem hívja le Realizálja a (pillanatnyi) opciós értéket (eladja): c Nyilván a nagyobb érték mellett fog dönteni. 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Amerikai vételi opció osztalékfizetés nélkül K0 KT c P0 P0-KT P0-K0 KT-K0 Láthatóan c mindig nagyobb a belső értéknél (P0-KT), így soha nem élnek a lehívás jogával, így a lehívhatóság joga értéktelen. c amerikai = c európai 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Amerikai vételi opció osztalékfizetéssel: c P0 DIV + DIV(T)0 –KT DIV(T)0 KT P0 DIV -KT P0 DIV -K0 eladás lehívás c K0 P0 DIV P0 A korábbi lehívás mellett szólhat a T-ig kifizetésre kerülő osztalékok megszerzése. c amerikai > vagy = c európai 2013. tavasz Származtatott termékek és reálopciók

Amerikai típusú eladási opciók értéke lejárat előtt Itt is az a kérdés, hogy a belső érték vagy az opció pillanatnyi értéke a nagyobb-e: Lehívja Realizálja a (pillanatnyi) belső értéket: KT-P0 Nem hívja le Realizálja a (pillanatnyi) opciós értéket (eladja): p 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Amerikai eladási opció osztalékfizetés nélkül: P0 p KT K0 p eladás lehívás K0 KT Látható, hogy alacsonyabb P0 esetén – az egyre csökkenő részletfizetési érték miatt – jobb a korábbi lehívás („hamarabb jut KT-hez”). p amerikai > vagy = p európai 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Amerikai eladási opció osztalékfizetéssel: p DIV(T)0 KT-(P0 DIV +DIV(T)0) = KT-P0 DIV -DIV(T)0 DIV(T)0 KT-(P0 DIV +DIV(T)0) = KT-P0 DIV -DIV(T)0 KT p K0 K0 KT P0 DIV P0 Az osztalékfizetés hatására a korábbi lehívás motivációja gyengül. p amerikai „kevésbé” > vagy = p európai 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók 2013. tavasz Származtatott termékek és reálopciók

Opciók értékének meghatározása Black-Scholes táblázattal A jelenlegi részvényárfolyam 59$, a részvény hozamának volatilitása 35,5%. Mennyit ér egy 63$-os kötési árfolyamú, féléves lejáratú vételi opció, ha a kockázatmentes kamatláb (fél évre) 2,5%? 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók 1. lépés volatilitás: 35,5%, lejáratig hátralévő idő: fél év 2. lépés KT=63$, P0=59$, rf=2,5% (fél évre) 3. lépés: táblázat: 8,2 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Azonban a piaci árfolyam 8,38$. Mit rontottunk el? A „piac” kb. 56%-os volatilitást becsül. Ez az ún. visszaszámított volatilitás. Eladási opció: 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók „érték / ár” 1 „kockázat” 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók 2013. tavasz Származtatott termékek és reálopciók

Befektetői stratégiák opciós ügyletekkel 2013. tavasz Származtatott termékek és reálopciók

Biztonsági eladási jog részvény + eladási jog Részvény PT Biztonsági put PT K LP PT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók A biztonsági eladási joghoz nagyon hasonló pozíciót ad az ún. küszöbáras megbízás. Lehet, hogy a két pozíció azonos, de a küszöbáras megbízás ingyenes? Nem. idő P 60$ 40$ t 2013. tavasz Származtatott termékek és reálopciók

Fedezett eladási kötelezettség részvény + eladási kötelezettség fedezett Mi értelme van ennek? intézményi befektetők, „terv szerint” adnak-vesznek. A kapott opciós díj „talált pénz”, mert „amúgy is eladná.” Lényegében az PT > K helyzeteket cserélik el a biztos opciós díjra. Részvény PT Fedezett vételi opció K PT SC K PT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Különbözeti ügyletek Két vagy több azonos típusú opcióban vállalunk pozíciót. Az opciók legalább egy jellemzőjükben eltérnek. eltérő kötési árfolyam: függőleges különbözet eltérő lejárat: vízszintes különbözet eltérő lejárat és kötési árfolyam: átlós különbözet Függőleges különbözet a vásárolt és a kiírt opciók kötési árfolyamának viszonya szerint lehet: erősödő, gyengülő, pillangó különbözeti ügylet. 2013. tavasz Származtatott termékek és reálopciók

Függőleges különbözeti ügyletek LC PT K1 Erősödő különbözeti ügylet vételi és eladási opciókból is létrehozható vételi opciók esetén a kiírt opcióért kapott díj kevesebb a vásárolt opcióért fizetendőnél (K növekszik) induló befektetésre van szükség különbözet PT K1 K2 SC K2 PT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Erősödő különbözeti ügylet eladási opciókból Már az induláskor pozitív pénzáramlást jelent. LP PT K1 különbözet PT K1 K2 SP K2 PT 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók Gyengülő különbözeti ügylet részvényárfolyam csökkenés vételi és eladási opciókból is az eladásinál van szükség induló befektetésre Limitálja a potenciális nyereséget és veszteséget is. A feladott nyereségért cserébe a befektető megkapja a kiírt opció díját. LC PT K2 különbözet K2 K1 PT SC K1 PT 2013. tavasz Származtatott termékek és reálopciók

Pillangó különbözeti ügylet Három különböző árfolyamú opciós pozíció Veszünk egy alacsony (K1) és egy magas (K3) árfolyamú vételi opciót, és kiírunk 2 közepes (K2) árfolyamú vételi opciót. különbözet LC SC K2 K3 PT K1 2013. tavasz Származtatott termékek és reálopciók

Vízszintes különbözetek SC K PT Naptári különbözet Azonos kötési árfolyam, eltérő lejárati időpont Pl.: kiírunk egy vételi opciót és veszünk egy hosszabb futamidejűt. induló befektetés Fordított vízszintes különbözeti ügylet rövid lejáratú opciót veszünk, hosszú lejáratút írunk ki K PT különbözet LC PT K 2013. tavasz Származtatott termékek és reálopciók

Származtatott termékek és reálopciók „Terpesz” Azonos kötési árfolyamú és azonos lejáratú vételi és eladási opciók egyidejű megvétele. A részvényárfolyam jelentősen el fog mozdulni „valamerre”. bírósági ügy állami szabályozás stb. „Volatilitásra fogadás” LC PT K Terpesz K PT LP K PT 2013. tavasz Származtatott termékek és reálopciók