MINTAVÉTEL, LEÍRÓ STATISZTIKA

Slides:



Advertisements
Hasonló előadás
2. előadás.
Advertisements

I. előadás.
Statisztika II. I. Dr. Szalka Éva, Ph.D..
ÁVF Leíró statisztika Statisztikai alapismeretek 1.
Gazdaságelemzési és Statisztikai Tanszék
Mérési pontosság (hőmérő)
Gazdaságelemzési és Statisztikai Tanszék
Microsoft Excel 2010 Gyakoriság.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Közlekedésstatisztika
Előadó: Prof. Dr. Besenyei Lajos
4. előadás.
3. előadás.
3. előadás.
A középérték mérőszámai
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Statisztika.
Kvantitatív Módszerek
Kvantitatív módszerek
Leíró statisztika III..
Valószínűségszámítás
Gazdaságstatisztika 11. előadás.
Gazdaságstatisztika Bevezetés szeptember 11.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Többváltozós adatelemzés
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Alapfogalmak.
Adatleírás.
I. előadás.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Viszonyszámok A viszonyszám két egymással logikai kapcsolatban álló statisztikai adat hányadosa V= A/B V: a viszonyszám A:a viszonyítás alapját képező.
Kvantitatív módszerek
Középértékek – helyzeti középértékek
Valószínűségszámítás II.
 A matematikai statisztika a természet és társadalom tömeges jelenségeit tanulmányozza.  Azokat a jelenségeket, amelyek egyszerre nagyszámú azonos tipusú.
A gyakorisági sorok grafikus ábrázolása
4. előadás.
A számítógépes elemzés alapjai
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Konzultáció – Leíró statisztika október 22. Gazdaságstatisztika.
Kvantitatív módszerek 2014 ősz MINTAVÉTEL, LEÍRÓ STATISZTIKA Kvantitatív módszerek szeptember 30.
Leíró statisztika, részekre bontott sokaság, becslés Árva Gábor PhD Hallgató.
Kvantitatív módszerek 2013 ősz MINTAVÉTEL, LEÍRÓ STATISZTIKA Kvantitatív módszerek október 1.
2. előadás Gyakorisági sorok
A számítógépes elemzés alapjai
Leíró statisztika gyakorló feladatok október 15.
Részekre bontott sokaság vizsgálata, gyakorló feladatok
Kvantitatív módszerek
Szóródási mérőszámok, alakmutatók, helyzetmutatók
Kvantitatív módszerek MBA és Számvitel mesterszak
Nemparaméteres próbák
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
I. Előadás bgk. uni-obuda
Dr. Varga Beatrix egyetemi docens
Speciális szóródás: Koncentráció
2. előadás Gyakorisági sorok, Grafikus ábrázolás
Adatfeldolgozási ismeretek műszeres analitikus technikusok számára
Adatsorok típusai, jellegadó értékei
5. előadás.
A leíró statisztikák alapelemei
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
Adatfeldolgozási ismeretek környezetvédelmi-mérés technikusok számára
Rangsoroláson és pontozáson alapuló komplex mutatók
4. előadás.
Mérési skálák, adatsorok típusai
Előadás másolata:

MINTAVÉTEL, LEÍRÓ STATISZTIKA Gazdaságstatisztika MINTAVÉTEL, LEÍRÓ STATISZTIKA 2015. október 6. , október 13.

Tudnivalók a továbbiakra Dr. Tóth Zsuzsanna Eszter tothzs@mvt.bme.hu QA311 Első zárthelyi 2015. október 8. két turnus, EIA és EIB Beosztás elérhető az üti tantárgyi adatlapon Segédanyagok Gazdaságstatisztika jegyzet II. rész (A matematikai statisztika alapjai) Gazdaságstatisztika példatár II. rész (A matematikai statisztika alapjai) Képletgyűjtemény (A matematikai statisztika alapjai)

Az előadás felépítése A matematikai statisztika tárgya Mintavételi alapok, mintavételi hiba Statisztikai sokaságok és ismérvek csoportosítása Mérési szintek, mérési skálák Leíró statisztika tárgya, célja, eszközei

Valószínűségszámítás - Matematikai statisztika Valószínűségszámítás: a véletlen tömegjelenségekben rejlő statisztikai törvényszerűségek vizsgálata Valószínűségelmélet: ismert az eloszlásfüggvény és annak paraméterei Valóság: nem ismert az eloszlásfüggvény és/vagy annak paraméterei A matematikai statisztika célja: következtetés tapasztalati (megfigyelési, mérési) adatokból események ismeretlen valószínűségeire, valószínűségi változók ismeretlen eloszlásfüggvényére vagy azok paramétereire. mintavétel, adatfeldolgozás, leíró statisztika, következtető statisztika

Sokaság: a vizsgálat tárgyát képező egységek összessége Matematikai statisztika lényege Sokaság: a vizsgálat tárgyát képező egységek összessége Következtetés A megfigyelési eredmények a minta elemei, a megfigyelések száma a minta nagysága vagy elemszáma. A minta elemei az alapsokaság eloszlásával megegyező eloszlású valószínűségi változók. Minta: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye Mintavétel Mintavétel: a statisztikai sokaságból információszerzés céljából véletlenszerűen egyedi elemeket emelünk ki

Mintavétel – részleges megfigyelés Cél: következtetéseket vonjunk le a teljes sokaságra vonatkozóan a sokaság részleges megismerése által A MINTA CSAK ESZKÖZ A SOKASÁG TELJES MEGISMERÉSÉHEZ! A statisztikai mintavételek és az ebből származó adatokat felhasználó elemzések mindig tartalmaznak hibákat! a statisztika szükségszerű velejárója, mintavételi hiba meghatározása

Mintavételi és nem mintavételi hiba Adatgyűjtéshez kapcsolódó hibák: pl. definíciós hibák, nemválaszolási hibák, végrehajtási hibák – NEM MINTAVÉTELI HIBA Védekezési mechanizmus: alkalmazott technikák, technológiák fejlesztése A teljes sokaság megismeréséről való lemondás ára – MINTAVÉTELI HIBA Védekezési mechanizmus: olyan mintavételi eljárásokat keresünk, hogy ez a lehető legkisebb legyen A mintavételi hiba annál kisebb, minél nagyobb a minta.

Mintavételi hiba A mintából számított bármely mutató értéke mintáról mintára változik. A mintából számított értékek a megfelelő sokasági jellemző körül szóródnak. Ez a szóródás kisebb minták esetében nagyobb, nagyobb minták esetében kisebb. A mintavételi hiba a vizsgált mutató lehetséges mintákból számított értékeinek átlagos eltérését mutatja a megfelelő sokasági értéktől.

A sokaságok csoportosítása Álló sokaság: állapotot fejez ki, adatai időpontra értelmezhetőek. Mozgó sokaság: folyamatot fejez ki, időtartamra értelmezhető. Diszkrét sokaság: elkülönülő egységekből áll. Folytonos sokaság: olyan tömegből áll, amelynek egységeit önkényesen határozzuk meg. Véges sokaság: térben és időben lehatárolt egyedek összessége Végtelen sokaság: a megfigyelhető egységek száma korlátlan

Ismérvek csoportosítása Ismérv: Olyan szempont(ok), amely(ek) alapján a sokaságot megfigyeljük, a sokaság egységeinek jellemzője. Közös és megkülönböztető ismérv Ismérv változat: az ismérv lehetséges kimeneteleit ismérv változatnak (tulajdonságnak) nevezzük. Alternatív ismérv: a két változattal rendelkező ismérvet alternatív ismérvnek nevezzük. Mennyiségi ismérv: méréses jellemző, kvantitatív változó. A sokaság egységeire vonatkozó számszerű megjelölést jelent, egy számmal írható le, amellyel matematikai műveletek végezhetők. Nem mennyiségi ismérv: a sokaság egységeire vonatkozóan valamilyen kategóriát rögzít, típusa szerint lehet időbeli, területi és minőségi ismérv.  

Ismérvek méréselméleti vonatkozásai A mérési skálákat, a mérés szintjét a hozzárendelési szabályok határozzák meg. A számok különféle relációk és műveletek szerint alkothatnak formális rendszert: egyenlőség, sorrendiség, additivitás. l. vagy A=B vagy AB 2. ha A=B, akkor B=A 3. ha A=B és B=C, akkor A=C 4. ha AB, akkor B<A 5. ha AB és BC, akkor AC 6. ha A=P és B0, akkor A+BP 7. A+B=B+A 8. ha A=P és B=Q, akkor A+B=P+Q 9. (A+B)+C=A+(B+C) Egyenlőségi axiómák Sorrendiségi axiómák Additivitási axiómák

Nominális (névleges) skála Legegyszerűbb mérési forma: számok kötetlen hozzárendelés dolgokhoz. az egyedi objektumok azonosító számozása; osztályok azonosítása (az egyes osztályokon belül lévő objektumok azonos számot kapnak). Az objektumokhoz rendelt szimbólumok, számok csak az objektumok, vagy azok osztályainak azonosítására szolgálnak (egyéb jelentésük nincs!) Követelmény: megkülönböztethetőség, így csak az egyenlőségi reláció értelmezhető. l. vagy A=B vagy AB 2. ha A=B, akkor B=A 3. ha A=B és B=C, akkor A=C Példa: útlevélszám, repülőjáratok számozása, mezszámok Számítható statisztikai mutató: osztályok azonosítása esetén a gyakoriság, modális osztály

Sorrendi (ordinális) skála Az egységeket valamilyen közös tulajdonság alapján összehasonlítjuk: a skála az egységek viszonylagos helyét is meghatározza, rendezi azokat. Egyenlőségi és sorrendiségi relációk: 4. ha AB, akkor B<A 5. ha AB és BC, akkor AC A sorrendi skálán mért egységek nincsenek egymástól egyenlő távolságra! Számtani átlag és szórás nem számítható!!!!! Számítható a kvantilis, medián, rangkorrelációs együttható. Bármilyen sorrendmegőrző transzformáció végezhető. Példa: termékek minőségi osztályozása, kérdőíves felméréseknél 3, 5, 7 fokozatú skála, tűzveszélyességi osztály

Intervallum skála Sorrendi skála tulajdonságai + a skála bármelyik két pontja közötti különbség, távolság is értelmezhető. Nincs rögzített nullpont, a skála nullpontját és mértékegységét szabadon választhatjuk meg. A közös és állandó mértékegység jellemzi és a számokat ennek alapján rendeljük a sorba rendezett dolgokhoz. A skála bármilyen lineáris transzformációja megengedett. A mértani átlag és a relatív szórás kivételével valamennyi statisztikai jellemző és mutató számítható. Például: hőmérséklet, naptári idő, tengerszint feletti magasság, intelligencia

Arányskála Legmagasabb rendű, a legerősebb mérési formát jelenti. Rendelkezik a korábbi skálák tulajdonságaival és teljesülnek az additivitási követelmények is: 6. ha A=P és B0, akkor A+BP 7. A+B=B+A 8. ha A=P és B=Q, akkor A+B=P+Q 9. (A+B)+C=A+(B+C) A skálának valódi nullpontja van, és bármelyik két pontjának aránya független a mértékegységtől. Például: testsúly, termelés, forgalom, jövedelem, kereset stb. mérése

Ismérvek és mérési skálák Mérési skála Területi Nominális skála Minőségi Sorrendi skála Mennyiségi Intervallum skála Időbeli Arányskála

Sokaság: a vizsgálat tárgyát képező egységek összessége Matematikai statisztika lényege Sokaság: a vizsgálat tárgyát képező egységek összessége Következtetés A megfigyelési eredmények a minta elemei, a megfigyelések száma a minta nagysága vagy elemszáma. A minta elemei az alapsokaság eloszlásával megegyező eloszlású valószínűségi változók. Minta: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye Mintavétel Mintavétel: a statisztikai sokaságból információszerzés céljából véletlenszerűen egyedi elemeket emelünk ki

Adatfelvételi módok Adatfelvétel Teljes körű – csak véges sokaság esetén (pl. népszámlálás) Részleges Mintavételes megfigyelés Kísérleti eredmények gyűjtése Egyéb részleges megfigyelés Véletlen(szerű) kiválasztás Nemvéletlen(szerű) kiválasztás reprezentativitás Mintavételi hiba számszerűsítési képessége ismert vagy meghatározható a sokaság elemeinek mintába kerülési esélye

MINTAVÉTEL, LEÍRÓ STATISZTIKA Gazdaságstatisztika MINTAVÉTEL, LEÍRÓ STATISZTIKA 2015. október 6. , október 13.

Mivel foglalkoztunk eddig? Matematikai statisztika tárgy Mintavételi és nem mintavételi hiba Sokaságok és ismérvek csoportosítása Mérési skálák Leíró statisztika eszközrendszere Gyakorisági táblázat készítése, értelmezése Gyakorisági sorok ábrázolása Leíró statisztikai mutatószámok Középérték és ingadozásmutatók Mivel foglalkozunk ma?

Statisztikai módszertan ágai LEÍRÓ vagy DESKRIPTÍV statisztika tömör, számszerű jellemzés: a megfigyelt adatok legjobb megértésére, bemutatására, összefoglalására törekszik. Például: Népszámlálási adatok feldolgozása, elemzése, a népesség számával, összetételével kapcsolatos jellemzők közzététele, megjelenítése Gazdasági szervezetek legfontosabb adatainak közzététele statisztikai évkönyvekben Lakásépítésről, oktatásról készített statisztikai összefoglaló Vállalat gazdálkodásának vizsgálata

Leíró statisztika Főbb területei: adatgyűjtés adatok ábrázolása adatok csoportosítása, osztályozása adatokkal végzett egyszerűbb aritmetikai műveletek eredmények megjelenítése

1. Adatgyűjtés Egyedi mérések adatai: Diszkrét vagy folytonos Egy diszkrét mennyiségi ismérv csak véges vagy megszámlálhatóan sok, egymástól jól elkülöníthető értéket vehet fel. Pl: háztartások nagysága, gazdálkodó szervezetek nagysága, balesetek száma, mogyorós csokiban a mogyorók száma, adott időszak alatti meghibásodások száma Egy folytonos mennyiségi ismérv valamely adott intervallumon belül bármilyen értéket felvehet. Pl. háztartások jövedelme, lakások alapterülete, gépkocsi abroncsok futásteljesítménye, Bux index havi hozamadata

2. Az adatok ábrázolása Eszközei: vonaldiagram oszlopdiagram kördiagram sávdiagram

3. Adatok csoportosítása, osztályozása Egy mennyiségi ismérv szerinti rendezés és osztályozás X mennyiségi ismérv (változó), Xi (ismérv)érték Rangsor A rangsor a megfigyelési egységeknek és/vagy azokhoz tartozó Xi ismérvértékeknek monoton nemcsökkenő sorrendben történő felsorolása. Készítésének célja: megkönnyítse a sokaság egységeinek X változó szerinti osztályozását Osztályozás Gyakorisági sor, gyakorisági eloszlás

3. Adatok csoportosítása, osztályozása Az X szerint képzett osztály Osztály- közép abszolút relatív alsó felső gyakoriság határa X10 X11 X1* f1 g1 X20 X21 X2* f2 g2 Xi0 Xi1 Xi* fi gi … Xk0 Xk1 Xk* fk gk Összesen N 1 Osztályközhosszúság:

3. Adatok csoportosítása, osztályozása X ismérv szerinti osztályozás kérdései: Az X változó diszkrét, és az általa felvehető értékek száma kicsi Annyi osztályt képezünk ahány különböző X érték lehetséges az i-edik osztály esetében fennáll az alsó és felső osztályhatár egybeesése Az X változó folytonos, vagy diszkrét ugyan, de az általa felvehető különböző értékek száma nagy X lehetséges értékeinek tartományát osztályközökre bontjuk az i-edik osztályköz Xi1 felső határa nem eshet egybe az (i+1)-dik osztályköz Xi+1,0 alsó határával Hány osztályt képezzünk? Az osztályok számának és határainak egy bizonyos sávon belüli változtatása nem nagyon befolyásolja a grafikus képet. (5-15 osztály)

3. Adatok csoportosítása, osztályozása A mennyiségi sorok grafikus ábrázolásának alapját a gyakorisági táblázat készítése jelenti. Osztályba sorolás (folytonos adatok és nagyszámú diszkrét megfigyelés esetén); gyakoriságok (fi) megállapítása; relatív gyakoriságok (gi) megállapítása összegzett (kumulált) gyakoriságok (fi’), illetve összegzett relatív gyakoriságok (gi’) megállapítása; gyakorisági táblázat készítése (fi , gi , fi’ , gi’ adataiból); gyakorisági (relatív gyakorisági), illetve összegzett gyakorisági (relatív gyakorisági) hisztogramok (folytonos adatok esetén a poligon és az ogiva) felvétele (tapasztalati eloszlások elkészítése); grafikus ábrázolás

Példa – kevés számú diszkrét adat A Gazdaságstatisztika c. tárgyat a 2012 őszi félévben felvett hallgatók érdemjegyeinek gyakorisági táblázata Diszkrét ismérv által felvehető értékek pálcikadiagram lépcső alakú diagram

Pálcikadiagram – diszkrét adat Érdemjegy Tapasztalati gyakoriság (fi) Relatív gyakoriság (gi) 1 68 0,089 2 280 0,368 3 274 0,361 4 91 0,120 5 47 0,062 Összesen 760

Kumulált tapasztalati gyakoriság (fi) Kumulált relatív gyakoriság (gi) Lépcső alakú diagram Érdemjegy Kumulált tapasztalati gyakoriság (fi) Kumulált relatív gyakoriság (gi) 1 68 0,089 2 348 0,458 3 622 0,818 4 713 0,938 5 760

Példa – nagy számú folytonos adat hónap hozam 2005. március -7,188% 2007. április 8,200% 2009. május 14,878% 2011. június -2,963% 2005. április -4,360% 2007. május 4,917% 2009. június 2,533% 2011. július -4,857% 2005. május 3,185% 2007. június 7,997% 2009. július 12,038% 2011. augusztus -15,731% 2005. június 10,292% 2007. július 1,152% 2009. augusztus 11,520% 2011. szeptember -15,778% 2005. július 10,053% 2007. augusztus -6,569% 2009. szeptember 4,223% 2011. október 10,947% 2005. augusztus 4,021% 2007. szeptember 3,616% 2009. október 1,698% 2011. november 0,196% 2005. szeptember 6,182% 2007. október -3,696% 2009. november 1,132% 2011. december -3,817% 2005. október -11,159% 2007. november -6,113% 2009. december 1,999% 2012. január 10,699% 2005. november 3,112% 2007. december 1,836% 2010. január 2,808% 2012. február 2,072% 2005. december -1,857% 2008. január -11,116% 2010. február -2,616% 2012. március -3,433% 2006. január 6,599% 2008. február 0,111% 2010. március 13,104% 2012. április -2,173% 2006. február 4,480% 2008. március -7,927% 2010. április 2,119% 2012. május -12,454% 2006. március -0,669% 2008. április 3,986% 2010. május -11,369% 2012. június 7,427% 2006. április 5,447% 2008. május -0,057% 2010. június -4,881% 2012. július 0,385% 2006. május -13,671% 2008. június -10,216% 2010. július 5,612% 2012. augusztus 0,606% 2006. június 0,764% 2008. július 8,558% 2010. augusztus 1,320% 2012. szeptember 5,956% 2006. július 5,398% 2008. augusztus -5,564% 2010. szeptember 2,963% 2012. október 3,343% 2006. augusztus -2,072% 2008. szeptember -10,735% 2010. október -0,402% 2012. november -5,098% 2006. szeptember -1,713% 2008. október -33,440% 2010. november -11,464% 2012. december -0,505% 2006. október 2,883% 2008. november -6,192% 2010. december 3,276% 2013. január 6,368% 2006. november 2,161% 2008. december -3,634% 2011. január 6,280% 2013. február -2,950% 2006. december 8,234% 2009. január -6,110% 2011. február 1,946% 2013. március -5,170% 2007. január -3,210% 2009. február -12,233% 2011. március -0,414% 2013. április 2,372% 2007. február -2,902% 2009. március 8,298% 2011. április 4,667% 2013. május 5,203% 2007. március 0,222% 2009. április 15,066% 2011. május -3,304% 2013. június -1,247%

Példa – nagy számú folytonos adat Rangsor -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558% A teljes értékköz: 30,844 (%)

Példa – nagy számú folytonos adat osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen GYAKORISÁGI TÁBLÁZAT

Gyakorisági hisztogram alsó határ felső határ osztályközép gi [%] -20,00% -15,00% -17,5% 2,02% -10,00% -12,5% 9,09% -5,00% -7,5% 0,00% -2,5% 23,23% 5,00% 2,5% 32,32% 10,00% 7,5% 15,15% 15,00% 12,5% 8,08% 20,00% 17,5% 1,01% összesen   100,00% GYAKORISÁGI HISZTOGRAM (tapasztalati (empirikus) sűrűségfüggvény) Gyakoriság vonaldiagramja

Gyakorisági vonaldiagram Gyakorisági görbe

Kumulált relatív gyakorisági hisztogram alsó határ felső határ osztályközép g’i [%] -20,00% -15,00% -17,5% 2,02% -10,00% -12,5% 11,11% -5,00% -7,5% 20,20% 0,00% -2,5% 43,43% 5,00% 2,5% 75,76% 10,00% 7,5% 90,91% 15,00% 12,5% 98,99% 20,00% 17,5% 100,00% összesen   Kumulált relatív gyakoriság vonaldiagramja KUMULÁLT RELATÍV GYAKORISÁGI HISZTOGRAM

Kumulált relatív gyakoriság vonaldiagramja KUMULÁLT RELATÍV GYAKORISÁG VONALDIAGRAMJA (tapasztalati eloszlásfüggvény) Ogiva

Tapasztalati eloszlások jellegzetességei Középértékek (helyzetmutatók): Helyzeti középértékek: az adatok közötti elhelyezkedésüknél fogva jellemzik a vizsgált gyakorisági eloszlás helyzetét medián, módusz Számított középértékek: az adatokkal kapcsolatos számszerű összefüggésük révén jellemzik vizsgált gyakorisági eloszlás helyzetét számtani átlag, mértani átlag, négyzetes átlag, harmonikus átlag Elvárások: Közepes helyzetűek Tipikusak Egyértelműen meghatározhatóak Könnyen értelmezhetőek

Medián me annak a legelső osztályköznek a sorszáma, amelyre igaz, hogy helyzeti középérték mutató a változó azon számértéke, amelynél az összes előforduló számérték fele kisebb, fele pedig nagyobb, így a rangsorba állított sokasági számértékeket két egyenlő gyakoriságú osztályra bontja Becsülhető osztályközös gyakorisági sorból is: Előnye: Mindig egyértelműen meghatározható Érzéketlen a szélsőértékekre, és nem függ a többi ismérvértéktől sem. Hátránya: Nem használható, ha az adatsorban sok az egyforma ismérvérték Egyéb tulajdonsága: A mediánt tartalmazó osztály bal végpontja. A mediánt tartalmazó osztály hossza. ha

Példa – diszkrét eset 760 adat  380. és 381. adat számtani átlaga a medián Medián értéke: 3

Példa – folytonos eset 99 adat  50. adat a medián (49 ennél kisebb, 49 ennél nagyobb) Medián értéke: 1,132%

N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: Példa – folytonos eset Medián becslése osztályközös gyakorisági sorból: No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: 0,00% ≤ x < 5,00%.

Módusz mo a legnagyobb gyakoriságú osztály(ok) sorszáma Hátránya: helyzeti középérték, a tipikus ismérvérték diszkrét ismérv esetén a módusz a leggyakrabban előforduló ismérvérték, folytonos ismérv esetén a gyakorisági görbe maximumhelye. Előnye: érzéketlen a szélsőértékekre, nem függ sem az összes, sem a kiugró ismérvértékektől. Hátránya: nem mindig határozható meg egyértelműen, és nem is mindig létezik nagy bizonytalansággal becsülhető Egyéb tulajdonsága: nyers módusz, osztályköz megválasztása Becsülhető osztályközös gyakorisági sorból is: A móduszt tartalmazó osztály bal végpontja. A móduszt tartalmazó osztály hossza. mo a legnagyobb gyakoriságú osztály(ok) sorszáma

Példa – diszkrét eset Az elégséges érdemjegy gyakorisága a legnagyobb (280 db), így a módusz értéke 2.

Példa – folytonos eset A legnagyobb gyakoriságú osztály az 5. sorszámú: 0,00% ≤ x < 5,00%. No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Számtani átlag számított középértékfajta az a szám, amellyel az átlagolandó számértékeket helyettesítve azok összege változatlan marad. Számítása: Előnye: bármely alapadathalmazból egyértelműen meghatározható, minden alapadatot felhasznál Hátránya: érzékeny a szélsőértékekre  nyesett átlag

Számtani átlag Egyéb fontos tulajdonsága: minimális, ha

Példa – diszkrét eset

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos példa osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Harmonikus átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok reciprokainak összege változatlan marad Alkalmazása: ha az értékek reciprokainak összege értelmezhető, leíró statisztikai viszonyszámok és indexszámítás

Mértani átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok szorzata változatlan marad Alkalmazása: ha az értékek szorzata értelmezhető, illetve az átlagolandó értékek exponenciálisan nőnek vagy csökkennek az időbeli fejlődés átlagos ütemének vizsgálatakor idősor-elemzés

Négyzetes átlag számított középérték-mutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok négyzetösszege változatlan marad Hátránya: a kiugróan magas értékekre érzékenyen reagál Alkalmazása: ha az előjeleknek nincs jelentősége szórásszámítás

Kvantilisek a rangsorban olyan osztópontok (osztályhatárok), amelyek egyenlő relatív gyakoriságokat fognak közre Az Xi/k i-edik k-ad rendű kvantilis az a szám, amelynél az összes előforduló ismérvértékek i/k-ad része kisebb, (1-i/k)-ad része pedig nagyobb, ahol k≥2 és i=1, 2 ,…, k-1.

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – Kvantilisek becslése No. Osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó Határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   Összesen

Ingadozásmutatók (szóródásmutatók) Csoportosításuk: Az adathalmazban szereplő értékek változékonyságát az egyes értékek egymás közötti különbségein, vagy egyes értékeknek egy kitüntetett értéktől (középérték) való eltérésein keresztül ragadja meg. Mértékegységüket tekintve: Abszolút mutatók: mértékegysége megegyezik az alapadatokéval Relatív mutatók: mértékegység nélküli

Terjedelem Interkvantilis terjedelem a szóródást az adathalmazban szereplő legnagyobb és legkisebb adat különbségeként jellemzi abszolút ingadozásmutató Előnye: a könnyű számítás Hátránya: értéke csak a két legszélsőségesebb ismérvértéktől függ, amelyeket sokszor a véletlen szeszélyeinek köszönhetünk. Interkvantilis terjedelem csökkenti a véletlen szélsőértékeket (legkisebb és legnagyobb értéket) alakító szerepét az adathalmaz két szélső k-adrendű kvantilisének különbsége

-15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Átlagos abszolút különbség (G) A szóródást az ismérvértékek egymás közötti különbségein keresztül méri, abszolút ingadozásmutató A minden lehetséges módon párba állított ismérvértékek különbségeinek abszolút értékéből számított számtani átlag. Kényelmetlen a számítása Alkalmazási területe: koncentráció elemzés

Példa Véletlenszerűen kiválasztunk 5 hallgatót, és kiszámítjuk a Gazdaságstatisztika tárgy 3 zh-ján elért eredményük átlagos abszolút különbségét. Az elért pontok: 45, 52, 76, 87, 92   45 52 76 87 92 7 31 42 47 24 35 40 11 16 5 Az 5 hallgató zh-n elért pontja átlagosan 25,8 ponttal tér el egymástól

Átlagos abszolút eltérés (Δ) A szóródást az értékeknek egy kitüntetett értéktől való eltéréseire támaszkodva jellemzi abszolút ingadozásmutató Az egyes ismérvértékek és a számtani átlag különbségeinek abszolút értékeiből számított számtani átlag

Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól. Példa – diszkrét eset Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól.

Példa – folytonos eset Az egyes hozamadatok átlagosan 5,3776%-kal térnek el a számtani átlagtól -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen Az egyes hozamadatok átlagosan 6,213%-kal térnek el a számtani átlagtól

(Korrigált) tapasztalati szórás a szóródást az alapadatoknak egy kitüntetett értéktől (számtani átlagtól) való eltérésein keresztül méri, abszolút ingadozásmutató A szórás az egyes Xi ismérvértékek átlagtól vett di eltéréseinek négyzetes átlaga: azt mutatja, hogy az egyes értékek átlagosan mennyire térnek el a számtani átlagtól. Olyan átlagos hiba, amit akkor követünk el, ha minden alapadatot a számtani átlaggal helyettesítünk. A számtani átlag tulajdonsága szerint ez a hiba minimális.

Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől. Példa – diszkrét eset Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől.

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Relatív szórás relatív ingadozásmutató az ismérvértékek átlagtól vett átlagos eltérése százalékos formában kifejezve a szórás és a számtani átlag hányadosa, csak pozitív értékű alapadatok esetében számítható: minél kisebb a relatív szórás, a számtani átlag annál jobban jellemzi az alapadatokat Alkalmazása: különböző sokaságok vagy ismérvek szóródásának összehasonlítására használják