BME Üzleti gazdaságtan Andor György
BME Ismétlés ›6 Tőkejavak árazódása –6.1 Várható hasznosság modellje –6.2 Kockázatkerülési együttható –6.3 Relatív kockázatkerülési együttható mérése –6.4 Hatékony portfóliók tartása –6.5 Piaci portfólió tartása –6.6 Béta kockázati paraméter ŐSZANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN2
BME σ(r)σ(r) E(r)E(r) Markowitz-féle modell
BME σ(r)σ(r) E(r)E(r) Hatékony portfóliók
BME σ(r)σ(r) E(r)E(r) Sharpe-féle modell
BME σ(r)σ(r) E(r)E(r) Tőkepiaci egyenes Piaci portfólió E(rM)E(rM) σ(rM)σ(rM)
1 βiβi β i σ(r M ) σ(rM)σ(rM) σ(ri)σ(ri) σ(εi)σ(εi) Karakterisztikus egyenes
BME 8
2012. ŐSZ9ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN Teljes kockázat Piaci kockázat (Nem diverzifikálható) (Szisztematikus) Egyedi kockázat (Diverzifikálható) (Nem szisztematikus)
BME ŐSZANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN10 ›Beláttuk, hogy a béta… ›Ha viszont a béta…, akkor a várható hozamok is a béták szerint kell rendeződjenek… ›Már vannak „pontjaink”: –β = 0, r f –β = 1, E(r M ) 6.7 Tőkepiaci várható hozamok és a béta
Értékpapír-piaci egyenes Piaci portfólió ›Ez a CAPM…
rMrM β Értékpapír-piaci egyenes β=1
BME ŐSZ15ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN Múltbeli (átlagos) viselkedés Jövőbeli (várható) viselkedés Várható = Elvárható = Átlagos E(ri)E(ri) βiβi
BME ŐSZ16ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN Iparágβ Acél (általános)0,87 Acél (integrált)0,91 Acél és bányászat1,01 Alumínium0,95 Arany / ezüst bányászat0,91 Áruszállítás / Bérfuvarozás0,80 Autó alkatrész gyártás (csere)0,67 Autó- és (egyéb) gumi0,91 Autóalkatrész gyártás (beszállító)0,87 Bank (Kanada)1,20 Bank (USA)0,99 Bank (USA, Középnyugat)1,02 Bank (USA-n kívül)1,52 Befektetési tevékenység (nem USA)1,44 Befektetési tevékenység (USA)0,86 Biztosítás (élet)1,16 Biztosítás (tulajdon / baleset)1,12 Bútor / lakáskiegészítők0,72 Cement és adalékanyagok0,67 Cipő0,89 Csomagolás0,46 Diverzifikált vállalat0,71 Dohányáru0,56 Egészségügyi ellátás0,80 Egészségügyi információs rendszerek0,82 Egészséügyi szolgáltatás0,79 Elektromos készülékek0,85 Elektromos szolgáltatatás (USA, nyugat)0,33 Elektromosság szolgáltatatás (USA, kelet)0,35 Elektromosság szolgáltatatás (USA, közép)0,32 Elektronika0,94 Elektronika és szórakoztatás (nem USA)0,91 Élelmiszer feldolgozás0,67 Élelmiszer kiskereskedés0,59 Élelmiszer nagykereskedés0,59 Energia (kanadai)0,56 Építőanyag0,69 Épület- és jármű kiegészítők gyártása0,68 Értékpapír forgalmazás0,84 Étterem0,68 Félvezető előállító berendezések1,91 Félvezetőipar1,33 Fém feldolgozás0,74 Földgáz (szállítás)0,40 Földgáz (vegyes)0,57 Gépgyártás0,61 Gyógyszer0,87 Gyógyszertár0,84 Hajózás0,42 Háztartási gép0,80 Hotel / Szerencsejáték0,57 Ingatlanalap0,61 Internet2,07 Ipari szolgáltatás0,82 Irodagépek és eszközök0,66 Kábel TV0,94 Kertészeti eszközök0,69 Kiskereskedés (építési anyagok)0,84 Kiskereskedés (speciális)1,11 Kiskereskedés (üzlet)0,95 Komputer és perifériák1,14 Komputer és Szoftver1,08 Kőolaj (integrált)0,72 Kőolaj (kitermelés)0,59 Környezetvédelm0,41 Közmű (nem USA)1,07 Közmű (víz)0,39 Lakásépítés0,55 Légifuvarozás0,84 Mobil távközlés1,27 Oktatási szolgáltatás0,89 Olajkitermelő szolgáltatások / eszközök0,95 Papír és faipar0,76 Pénzügyi szolgáltatás0,89 Pipere- és kozmetikai cikkek1,15 Precíziós műszer0,85 Reklám1,45 Repülés / Honvédelem1,17 Sajtó0,86 Személy- és tehergépjármű1,24 Szeszesital0,64 Szórakoztatóipar1,19 Takarékpénztár0,55 Telekomminkációs szolgáltatás1,38 Telekommunikáció (nem USA)1,35 Telekommunikációs eszközök1,39 Terjesztés1,04 Textil (ruhaipar)0,62 Üdítőital1,03 Üdültetés1,22 Vasút0,89 Vegyipar (alap)1,03 Vegyipar (speciális)0,92 Vegyipar (vegyes)0,98
BME 6.9CAPM tesztjei és továbbfejlesztései ›A modell adta előrejelzések és a valós árak viszonya. ›Ex ante (előzetesen érvényesülő) várakozások ex post tesztelése –Abból indulunk ki, hogy a várakozások átlagosan és összességükben helyesek voltak. –Ekkor a hosszabb idő alatti valós adatoknak közelíteni kell a (korábbi) várakozásokhoz (stabil béták, idő- és kockázatdiszkontok esetén) ŐSZ17ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ›CAPM tesztelése –Kijelölünk egy időszakot (mondjuk adott öt évet), és véletlenszerűen kiválasztunk „jó sok” (mondjuk száz) értékpapírt. –Egyenként meghatározzuk az értékpapírok bétáit, valamint átlagos éves hozamait. –Az eredményeket béta – átlagos hozam koordináták szerint ábrázoljuk ŐSZ18ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ŐSZ19ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ŐSZ20ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ›A CAPM „elég jó”… –Különösen annak a fényében, hogy a modell mögött milyen erős feltételezések állnak. ›Eltérések magyarázatai –1) A CAPM valójában érvényes, csak a piaci portfólió megragadásával vannak problémák. ›Nem megfelelő az M -et reprezentáló index. –2) Olyan tőkepiaci tökéletlenségek lépnek fel, amik a CAPM-et irreálissá teszik. ›Pl. hitelfelvételi költségek és korlátok, adótorzítások stb. –3) Egyéb befektetői szempontok, faktorok is vannak, nem csak a β ŐSZ21ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ›Fogyasztási CAPM –Egy alternatív modell –A standard CAPM arra épít, hogy a befektetésből nyert összegeket fogyasztásra fordítják. –A fogyasztási CAPM-nél a teljes fogyasztással nyerhető hasznosságot maximalizálják. ›Itt nem a piaci portfólióval való sztochasztikus kapcsolatot nézik, hanem a fogyasztással valót. ›„Az a jó”, ha a befektetésből akkor származik hozam, amikor a fogyasztás amúgy csökkenne, illetve fordítva. ›A fogyasztási CAPM-hez kapcsolódó fogyasztási béta nem a piaci portfólió, hanem – közelítésként – az aggregált fogyasztás ingadozásával való kapcsolatra épül: ŐSZ22ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ›Többfaktor-modellek –Ezek is alternatív modellek –A CAPM egyfaktor-modell –Híresebb többfaktor-modellek ›Arbitrált árfolyamok modellje –Makroökonómiai faktorok (GDP, infláció, kamatlábváltozás stb.) – β 1, β 2, β 3 … ›Fama- és French-féle háromfaktor-modell –SMB mérettényező ›A kis és nagy kapitalizációjú vállalatok részvényeiből álló diverzifikált portfóliók hozamainak különbsége –HML könyv szerinti érték–piaci érték tényező ›A magas és az alacsony könyv szerinti érték–piaci érték hányadosú részvényekből álló diverzifikált portfóliók hozamainak különbsége ŐSZ23ANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN
BME ŐSZANDOR GYÖRGY: ÜZLETI GAZDASÁGTAN24 ›Portfóliómenedzsment –passzív portfóliómenedzselés –aktív portfóliómenedzselés ›Tőkepiaci hatékonyság kérdése dönti el –Tökéletes tőkepiaci hatékonyság esetén, és elfogadva a Sharpe-féle egyszerűsítő feltételeket, a passzív portfóliómenedzsment gyakorlati formája az M piaci portfólió és f kockázatmentes lehetőség kombinációja Portfóliómenedzsment és CAPM
BME σ(r)σ(r) E(r)E(r) Sharpe-féle modell