Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Színformátumok és színmodellek Témakörük volt: Gönczi Bálint, Hegedűs Attila, Hollenczer Péter, Horváth Zsófia, Juhász Gábor Készítette: Horváth Zsófia.

Hasonló előadás


Az előadások a következő témára: "Színformátumok és színmodellek Témakörük volt: Gönczi Bálint, Hegedűs Attila, Hollenczer Péter, Horváth Zsófia, Juhász Gábor Készítette: Horváth Zsófia."— Előadás másolata:

1 Színformátumok és színmodellek Témakörük volt: Gönczi Bálint, Hegedűs Attila, Hollenczer Péter, Horváth Zsófia, Juhász Gábor Készítette: Horváth Zsófia

2 Színelméleti alapfogalmak: – Szín – Látható fény – Színskála – Elsődleges v. alapszínek – Színhőmérséklet – Telítettség – Színárnyalat – Fényesség

3 Színformátumok • Elsődleges színek, vagy tiszta színek: piros, sárga, kék. • Alapszínek: piros (red), zöld (green), kék (blue) Színrendszerek • Additív színrendszer • Szubtraktív színrendszer • Black and White • 16 Color • 256 Color • Grayscale:

4 Színmodellek • RGB • Három főszín, a vörös (red), a zöld (green) és a kék (blue) egymásra vetítésével létrejövő szín: ez az additív (összeadó) színkeverés. A TV-képernyő, szkenner, monitor működési elve. Minden képpont e három összetevőből áll, a monitoron az egyes komponensek fényerejét jelöli között. A rendszerben 16,777,216 eltérő szín írható le. (Az analóg TV több szín megjelenítésére is képes) • CMYK • Három főszín: a cián (cyan), bíbor (magenta), sárga (yellow), és fekete (key) keverésével létrejövő színmodell. (A fekete szín jele k, és nem b, a blue/black tévesztés elkerülésére. Elméletileg a CMY keverése is feketét ad, de a valóságban a festékek nem teljesen tiszták, a takarékossági szempontokon túl ezért adunk feketét is hozzá.)

5 HSB • Az emberi szemben a látás kétfajta típusú receptor (pálcák, csapok) segítségével jön létre. • Biológiai okokból egy szín pontos leírásához tehát nem elégségesek a csak a színt leíró (RGB, CYMK) modellek. Figyelembe kell vennünk a színben fellelhető fehér fénykomponens fényességét (lightness, brightness) is, így egy 3 dimenziós szín-tér jön létre: • Így a látható fény színeit pontosan leírhatjuk: a tökéletes feketét és fehéret az alsó és felső pontokon, a színárnyalatokat a térben ábrázolhatjuk. • A fényességet különböző modellek eltérően írják le, ezért hasonló elven működő modellek léteznek egymás mellett: Hue-Saturation-Brightness (brightness - a szem fényérzékelő képességének figyelembevételével, bonyolult számítások alapján); Hue-Saturation-Luminance (luminance - a CIE definíciója alapján számszerűen leírható); Hue-Lightness-Saturation (lightness - a luminance emberi érzékelést figyelembe vevő módosítása). • A színárnyalat 0 és 359 közötti értékben egy színt határoz meg a színkeréken, a telítettség és a fényesség megadása százalékban történik. A telítettség jelentése: mennyire keskeny sávot határoz meg a színkerékből. Nagyobb érték esetén a megadott szín távolabbi szomszédai is részt vesznek a szín kikeverésében, a szín pasztell, majd szürkés árnyalatú lesz. Minimális érték esetén a szín "tiszta".

6 HLS színmodell • A HLS színmodell ugyanezeket az értékeket tartalmazza, csak a fényesség helyett a L – Luminancia szerepel. Mindegyik 0 és 255 közötti értéket vehet fel, vagy az előzőhöz hasonlóan a színárnyalat 0 és 359 között, a másik kettő százalékban adható meg. RYB • A három elsődleges szín (piros, sárga, kék – a tiszta színek) által kevert színek. A másodlagos színek ezek egyenlő mértékű keverésével állnak elő: narancs, zöld, lila. Ez szubtraktív színrendszer, tehát a fehér szín a teljes színhiány. A három elsődleges szín összessége barna. A tökéletesen fekete nem keverhető ki.


Letölteni ppt "Színformátumok és színmodellek Témakörük volt: Gönczi Bálint, Hegedűs Attila, Hollenczer Péter, Horváth Zsófia, Juhász Gábor Készítette: Horváth Zsófia."

Hasonló előadás


Google Hirdetések