Gráf szélességi bejárása. A szélességi bejárás elmélete Célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő.

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
KÉSZÍTETTE: Takács Sándor
MESTERSÉGES INTELLIGENCIA (ARTIFICIAL INTELLIGENCE)
egy egyszerű példán keresztül
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Vektormező szinguláris pontjainak indexe
Minimális költségű feszítőfák
Erősen összefüggő komponensek meghatározása
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Dijkstra algoritmus Irányított gráfban.
Szélességi bejárás Párhuzamosítása.
Szélességi bejárás , 0.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráfok szélességi bejárása
Gráf Szélességi bejárás
Gráfok szélességi bejárása Algoritmus bemutatása egy gráfon példa.
Dominók és kombinatorika
Gráf szélességi bejárása. Alapfogalmak G = (V,E)irányított, véges, nem üres gráf d (s,u)két csúcs távolsága lút hossza, élek száma Qsor adatszerkezet.
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Készítette: Kosztyán Zsolt Tibor
Gráf szélességi bejárása
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 2. Feladat Pup Márton.
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Hierarchikus lista Kétféle értelemezése van:
Gráf Szélességi bejárás/keresés algoritmusa
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
A Dijkstra algoritmus.
Gráf szélességi bejárása SzB(G,p). Tetszőleges gráf, melyben a p csúcsot választottam kiindulónak: A gráfnak megfelelő fa:
Tíz játék, tizenegy tüskén Székely Márton
SZÉLESSÉGI BEJÁRÁS Gréczy Ákos – JKR7ZR. MESE Van egy középkori kisváros, ahol az utcai lámpákat egy korosodó lámpagyújtogató ember gyújtja fel. Egyik.
Nevezetes algoritmusok: Fa megvalósítása Készítette: Várkonyi Tibor Zoltán.
Gráfok 1. Szlávi Péter ELTE IK Média- és Oktatásinformatika Tanszék
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
Szélességi bejárás. Kezdőcsúcsból felvétele Innen haladunk egy szinttel mélyebbre, felvesszük az összes olyan csúcsot, amit így elérhetünk Ha elfogytak,
Kruskal-algoritmus.
Szélességi bejárás. Kezdőcsúcs felvétele Innen haladunk egy szinttel lejebb, itt felvesszük az összes olyan csúcsot, amit elérünk Ha elfogytak, akkor.
GRÁFOK Definíció: Gráfnak nevezzük véges vagy megszámlálhatóan végtelen sok pont és azokat összekötő szintén véges vagy megszámlálhatóan végtelen sok.
Gráfok ábrázolása teljesen láncoltan
Szélességi bejárás. Feladat  Szélességi bejárás módszerrel menjünk végig egy tetszőleges gráfon.  Kikötés: A gráf egyszerű, azaz hurok- és többszörös.
Horváth Bettina VZSRA6.  Célja: Az eljárás célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben.
Útkeresések.
SZÉLESSÉGI BEJÁRÁS Pap Imre DVX468. A bejárás Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. Aztán ezen szomszédok összes.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Gráfalgoritmusok Szélességi bejárás.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
MÉLYSÉGI BEJÁRÁS FZGAF0 – PINTÉR LÁSZLÓ. ALGORITMUS ELMÉLETE Egy s kezdőpontból addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba,
INFOÉRA Gráfok, gráfalgoritmusok II. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Juhász István-Zsakó László: Informatikai.
Szélességi bejárás. Véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben Egy csúcsot egyszer járunk be Egyenlő.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
3. Feladat Szélességi Bejárás FZGAF0 – Pintér László.
Szélességi bejárás Pátyerkó Dorina (VTYX9O). Szélességi bejárás algoritmusa Kijelölünk egy kezdőcsúcsot. A csúcs szomszédjait megkeressük, majd betesszük.
Gráfalgoritmusok Tassy Gergely Veres Péter Gimnázium, Budapest június 30.
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
Kockázat és megbízhatóság
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Előadás másolata:

Gráf szélességi bejárása

A szélességi bejárás elmélete Célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben A bejárt csúcsok sorrendje „szintfolytonos” (először az 1, majd a 2 távolságra lévő csúcsokat dolgozzuk fel, stb…) Egy, már bejárt csúcs későbbi elérése eltekintendő Azonos távolság esetén a sorrend nincs meghatározva Megjegyzés: egyszerű, hurokél mentes gráf vizsgálata

ADS szintű megvalósítás Szemléltetés: sor adattípus alkalmazásával A sorban csak k vagy k+1 távolságú csúcsok lehetnek az elérésük sorrendjében, amely egyben a k-tól való távolságuk növekedő sorrendje Ameddig ki nem ürül a sor, vegyük ki az első elemet, írjuk ki és a még sorra nem került szomszédjait rakjuk be a sorba.

Csúcsok lehetséges státuszai:  fehér: még el nem ért csúcs  szürke: elért, de még nem kiírt csúcs  fekete: már kiírt és „elhagyott” csúcs, melynek szomszédaihoz haladunk tovább (kezdeti állapot: minden csúcs fehér, kivétel a „gyökérnek” megadott kezdőcsúcs szürke) Állapotok

Lépések Az 1-es csúcs kivétele az első sorból Az 1-es csúcs fehér szomszédainak elérése, szürkítés 1-es csúcso t feketére

Végső állapot

Megvalósítás ábrázolás szinten, éllistával szín[1..n] –csúcsok színét tároló tömb d[1..n] – csúcsok távolsága a kezdőponttól P[1..n] – csúcsokhoz vezető úton a megelőző csúcs Kezdeti állapot: kezdőcsúcstól végtelen távolságra van minden csúcs

Műveletigény: T(n) = Θ(n) + Ο(e) = Ο(n + e) ( e: az él listák együttes hossza) Megjegyzés: nincs kikötve, hogy a gráf összefüggő

Egy belvárosi társasház 3. emeletén üresen álló hatalmas lakásba költözött egy nagy egyetemista társaság. Szeretnének lakásavató bulit tartani, de nem ismerik a szomszédokat, így elhatározzák, hogy felmérik a terepet és a későbbi felháborodást elkerülve, udvariasan értesítik, a lakásukhoz közeli lakókat. Mivel nincs túl sok idejük, és nem akarnak mindenhova becsengetni felosztják a szomszédságot és különböző irányba indulnak el. Először a közvetlen mellettük, alattuk és felettük lakókhoz. Mindenkitől kipuhatolják, hogy mennyire érzékelhető, ha a lakásukban zajonganak, és ennek fényében azokhoz a lakásokhoz mennek tovább, melyek a mellettük lakók közvetlen szomszédai (vagyis a tőlük számított második lakásban lakókhoz), és így tovább egészen addig, amíg úgy gondolják, hogy már elég lakót értesítettek a közelgő eseményről. Példa