Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’

Slides:



Advertisements
Hasonló előadás
Deduktív adatbázisok.
Advertisements

Predikátumok Dr. György Anna BMF-NIK Szoftvertechnológia Intézet.
Kondicionális Eddig: Boole-konnektívumok ( , ,  ) Ezek igazságkonnektívumok (truth-functional connectives) A megfelelő köznyelvi konnektívumok: nem.
Adatbázisrendszerek elméleti alapjai 2. előadás
5. A klasszikus logika kiterjesztése
Matematikai logika.
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
1 Előhang Világunk dolgainak leírásához gyakran használunk kijelentő mondatokat. Pl. Minden anya szereti gyerekeit. Júlia anya és Júlia gyereke Máté. Következmény:
LOGIKA.
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Kocsisné Dr. Szilágyi Gyöngyi
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
MI 2003/5 - 1 Tudásábrázolás (tudásreprezentáció) (know- ledge representation). Mondat. Reprezentá- ciós nyelv. Tudás fogalma (filozófia, pszichológia,
MI 2003/7 - 1 Az egyesítési algoritmus Minden kapitalista kizsákmányoló. Mr. Smith kapitalista. Mr. Smith kizsákmányoló.
Általános lélektan IV. 1. Nyelv és Gondolkodás.
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
Logika 7. A klasszikus logika kiterjesztése Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 24.
Bevezetés a matematikába I
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.
Logika 4. Logikai összefüggések Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 3.
Érvelés, bizonyítás, következmény, helyesség
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Szillogisztika = logika (következtetéselmélet)? Az An.Post.-ban, és másutt is találunk olyan megjegyzéseket, hogy minden helyes következtetés szillogizmusok.
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
Függvényjelek (function symbols) (névfunktorok) FOL-ban Névfunktor: olyan kifejezés, amelynek argumentumhelyeire neveket vagy in- változókat lehet írni.
A kvantifikáció igazságfeltételei
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
A logika centrális fogalmai a kijelentéslogikában Propositional logic Nulladrendű logika Általában Logikai igazság Logikai ekvivalencia Logikai következmény.
(nyelv-családhoz képest!!!
Formális bizonyítások Bizonyítások a Fitch bizonyítási rendszerben: P QRQR S1Igazolás_1 S2Igazolás_2... SnIgazolás_n S Igazolás_n+1 Az igazolások mindig.
Vegyes kvantifikáció A kvantorcsere szerepe a Henkin-Hintikka játékban: l. Mixed Sentences, Kőnig’s World. Gyakorlás: 11.5 HF: 11.4, 11.9.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Fordítás természetes nyelvről FOL-ra Kvantifikáló kifejezések: Néhány/Egy F   x( F(x)  …) Minden G   x( G(x)  …) Két H   x  y( H(x)  H(y)  …)
Az informatika logikai alapjai
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Az informatika logikai alapjai
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Ne felejtsük el: Legyen A tetszőleges kijelentés. Arra a kérdésre, hogy „A akkor és csak akkor igaz-e, ha te lovag vagy?” a lovagok is, a lókötők is.
Deduktiv adatbázisok. Normál adatbázisok: adat elemi adat SQL OLAP adatbázisok: adat statisztikai adat OLAP-SQL … GROUP BY CUBE(m1,m2,..)
Mindenki kezet fogott mindenkivel.  x  y(x kezet fogott y-nal) Biztos? Ugyanez a probléma egy másik példán: Cantor’s World, Cantor’s Sentences. Az érdekesebb.
Tananyag: Barwise-Etchemendy: Language, Proof and Logic II. Quantifiers Weblap: Fogadóóra: H 15:30-17:00, i/226.
1 Relációs kalkulusok Tartománykalkulus (DRC) Sorkalkulus (TRC) - deklaratív lekérdezőnyelvek - elsőrendű logikát használnak - relációs algebra kifejezhető.
Kvantifikáció:  xA: az x változó minden értékére igaz, hogy…  a: értelmetlen. (Megállapodás volt: ̒a’, ̒b’, … individuumnevek.) Annak sincs értelme,
Analitikus fa készítése Ruzsa programmal
Analitikus fák kondicionálissal
Logika szeminárium Barwise-Etchemendy: Language, Proof and Logic
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
Analitikus fák a kijelentéslogikában
Demonstrátorok: Sulyok Ági Tóth  István
Fordítás (formalizálás, interpretáció)
Tudás- és konfirmációs paradoxonok Hempel- avagy holló-paradoxon
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
Logika előadás 2017 ősz Máté András
Atomi mondatok Nevek Predikátum
Érvelések (helyességének) cáfolata
Kijelentéslogikai igazság (tautológia):
Nulladrendű formulák átalakításai
Elméleti probléma: vajon minden következtetés helyességét el tudjuk dönteni analitikus fával (véges sok lépésben)? Ha megengedünk végtelen sok premisszás.
Bevezetés a matematikába I
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
9.10 feladat: arra kellett törekedni, hogy a magyar köznyelvben is elképzelhető mondatokká fordítsuk le a FOL-mondatokat. („clear english”) Ez nem mindig.
Előadás másolata:

Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’ mondat igaz. Aki ‘  xA(x)’ hamisságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’ mondat hamis. Ha a ‘  xA(x)’ mondat hamisságára fogadunk, akkor a fentiek szerint az ellenfél mutathat egy objektumot, amire az ‘A(x)’ mondat igaz. Ha a ‘  xA(x)’ mondat igazságára fogadunk, akkor a fentiek szerint az ellenfél mutathat egy objektumot, amire az ‘A(x)’ mondat hamis. HF: 9.10 Cél: egy szövegfájl (9.10_vezeteknev.doc,.docx vagy.rtf) tizenkét mondattal (angol vagy magyar, tetszés szerint).

Logikai igazságok, helyes következtetések – újak és régiek  x Él(x)  x Virul(x)  x(Él(x)  Virul(x))  x Él(x)  x Virul(x)  x Él(x)   x Virul(x)  x Él(x)  x Virul(x)  x Él(x)   x Virul(x)  x Él(x)  x Virul(x)  x (Él(x)  Virul(x)) Kijelentéslogikai következmények (TautCon) Elsőrendű következmény (FOCon)

Hasonlóképpen logikai igazságokkal:  xTet(x)  xTet(x) logikai igazság (tautológia)  xTet(x)  x  Tet(x) nem logikai igazság  x(Tet(x)  Tet(x)) (FO) logikai igazság, de nem tautológia.  xTet(x)   x  Tet(x) ugyancsak FO logikai igazság, de nem tautológia.  xTet(x)   xTet(x) tautológia. Definíció: Az elsőrendű nyelv egy mondata tautológia, ill. egy következtetése tautologikusan helyes (másképp: a konklúzió tautologikusan következik a premisszákból), ha a kijelentéslogikai formája tautológia, illetve helyes kijelentéslogikai következtetési séma. Emlékeztető: a kijelentéslogikai forma úgy áll elő, ha a kijelentéslogikában tovább nem bontható részmondatokat mondatbetűkkel helyettesítjük. A tárgyalási univerzum nem lehet üres!

Algoritmus a kijelentéslogikai (truth-functional) forma előállítására az elsőrendű nyelv egy zárt mondatából: Balról jobbra elkezdjük olvasni a mondatot. Ha kvantorhoz érünk, elkezdünk egy aláhúzást, amely a kvantifikáció hatókörének végéig tart. Ha predikátumhoz érünk, aláhúzzuk azt az atomi mondatot, amelyben ő a predikátum. Ha az, amit aláhúztunk, még nem szerepelt korábban, akkor megcímkézzük egy új mondatbetűvel. Ha szerepelt, akkor azzal a betűvel címkézzük meg, amivel az azonos mondatot korábban. Ezután tovább folytatjuk az olvasást az aláhúzás végétől jobbra. Ha a formula végére értünk, kész vagyunk az annotálással. Ezután minden részmondatot a címkéjével helyettesítünk. KÉSZ.

Példa: (  x(Cube(x)  y(FrontOf(x, y)  BackOf(x, y)))  (  zDodec(z)  Cube(a)))  (  xCube(x)   Cube(a)) (  x(Cube(x)  y(FrontOf(x, y)  BackOf(x, y))) A  (  zDodec(z)  Cube(a)))  (  xCube(x)   Cube(a)) (  x(Cube(x)  y(FrontOf(x, y)  BackOf(x, y))) A  (  zDodec(z) B  Cube(a)))  (  xCube(x)   Cube(a)) (  x(Cube(x)  y(FrontOf(x, y)  BackOf(x, y))) A  (  zDodec(z) B  Cube(a) C ))  (  xCube(x) D   Cube(a)) (  x(Cube(x)  y(FrontOf(x, y)  BackOf(x, y))) A  (  zDodec(z) B  Cube(a) C ))  (  xCube(x) D   Cube(a) C ) (A  (B  C))  (  D   C) HF: 10.3, 10.4

Centrális logikai fogalmak - újra Logikai igazság: minden lehetséges világban igaz Logikai következmény [helyes/érvényes következtetés]: minden világban, ahol a premisszák igazak, a konklúzió is igaz. Logikailag ekvivalensek: ugyanazokban a világokban igazak. Lehetséges világok: nyelvhez (nyelv- családhoz képest!!! Kijelentéslogikai igazság (tautológia): a kijelentéslogikai formája logikai igazság. Azaz bármilyen igazságértéket rendelünk a mondatbetűkhöz, az egész mondat igaz. Kijelentéslogikai (tautologikus) következmény: Ha úgy rendelünk igazságértéket a mondatbetűkhöz, hogy a premisszák igazak, akkor a konklúzió is igaz lesz. Kijelentéslogikailag (tautologikusan) ekvivalensek: bárhogy rendelünk a mondatbetűkhöz igazságértéket, egyszerre igazak.

Centrális logikai fogalmak az elsőrendű logikában Elsőrendű logikai igazság, avagy érvényes mondat (FO validity) Elsőrendű (logikai) következmény, avagy elsőrendben érvényes következtetés Elsőrendű (logikai) ekvivalencia Mindegyik a megfelelő általános fogalom specifikációja azzal a megszorítással, hogy „az elsőrendű logika konstansainak (konnektívumok kvantorok, azonosságjel) jelentéséből adódóan”. Mindegyik tágabb, mint a megfelelő kijelentéslogikai fogalom (tautológia, tautologikus következmény, tautologikus ekvivalencia) és szűkebb, mint az általános logikai (analitikus) igazság, stb. Pontosabb definíciót keresünk, elsősorban az érvényes következtetésre.

Elsőrendű logikai (FO) igazság (validity): logikai igazság, és ez nem függ a szereplő predikátumoktól és in-nevektől. Azaz bármilyen univerzumban, bárhogy rendelünk a szereplő predikátumokhoz terjedelmet és az in-nevekhez jelöletet, igaz lesz. Elsőrendű logikai következmény: ha úgy rendelünk a szereplő predikátumokhoz terjedelmet és a z in-nevekhez jelöletet, hogy a premisszák igazak legyenek, akkor a konklúzó is igaz lesz. Elsőrendű logikai ekvivalencia: kölcsönös következmény. Ez ugyanaz, mint két héttel ezelőtt, a kvantifikációs De Morgan-szabályoknál? Igen!

 x(x > 0  x =0)   x(x >0  x=0) Tautológia.  x  y((Páros(x)  x=y)  Páros(y)) FO igazság, de nem tautológia.  x(x > 0  x =0) Logikai (analitikus) igazság a természetes számok aritmetikájának nyelvében, de nem FO igazság.  x  y  z((x>y  y>z)  x>z) Logikai igazság minden olyan nyelvben, ahol ‘>’ azt jelenti, hogy nagyobb, de nem FO igazság.  x(Larger(x, a))  x(Larger(b, x)) Következik-e ezekből logikailag/elsőrendben, hogy Larger(a, b)? És azzal a pótpremisszával, hogy Larger(c,d)? Így már logikailag (analitikusan) következik. De elsőrendben nem: jelentse most ‘Larger(x, y)’ azt, hogy x szereti y-t.