Az erőtörvények Koncsor Klaudia 9.a.

Slides:



Advertisements
Hasonló előadás
Mozgások I Newton - törvényei
Advertisements

Környezeti és Műszaki Áramlástan I. (Transzportfolyamatok I.)
A Newtoni dinamika A tömeg és az erő Készítette: Molnár Sára.
I S A A C N E W T O N.
Speciális erők, erőtörvények
Mozgások Emlékeztető Ha a mozgás egyenes vonalú egyenletes, akkor a  F = 0 v = állandó a = 0 A mozgó test megtartja mozgásállapotát,
Egymáson gördülő kemény golyók
DINAMIKAI ALAPFOGALMAK
Newton mechanikája gravitációs elmélete
Newton törvényei.
2. Előadás Az anyagi pont dinamikája
Gravitációs erő (tömegvonzás)
Az erő.
SÚRLÓDÁSI ERŐ.
Kölcsönhatások.
Az erő.
Összefoglalás Dinamika.
I. Törvények.
Fm, vekt, int, der Kr, mozg, seb, gyors Ütközések vizsgálata, tömeg, imp. imp. megm vált ok másik test, kh Erő F=ma erő, ellenerő erőtörvények több kh:
11. évfolyam Rezgések és hullámok
Coulomb törvénye elektromos - erő.
Erőtan Az erő fogalma Az erő a testek kölcsönös egymásra hatása.
A MOZGÁST BEFOLYÁSOLÓ HATÁSOK
A dinamika alapjai III. fejezet
Az erő.
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Biológiai anyagok súrlódása
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Dinamika, Newton törvények, erők
Issac Newton Gravitáció
Erőtörvények Tóth Klaudia 9/b..
DINAMIKA Tömeg és erő Galileo Galilei ( ) Sir Isaac Newton
Legfontosabb erő-fajták
A tehetetlenség törvénye. A tömeg.
A dinamika alapjai - Összefoglalás
DINAMIKA Tömeg és erő Galileo Galilei ( ) Sir Isaac Newton
A súrlódás és közegellenállás
A forgómozgás és a haladó mozgás dinamikája
Merev test egyensúlyának vizsgálata
Newton gravitációs törvényének és Coulomb törvényének az összehasonlítása. Sípos Dániel 11.C 2009.
A legismertebb erőfajták
Erőhatás, erő -Az erő fogalma-.
A tömeg (m) A tömeg fogalma A tömeg fogalma:
Ütközések Ugyanazt a két testet többször ütköztetve megfigyelhető, hogy a következő összefüggés mindig teljesül: Például a 2-szer akkora tömegű test sebessége.
Súrlódás, súrlódási erő
A NEHÉZSÉGI ÉS A NEWTON-FÉLE GRAVITÁCIÓS ERŐTÖRVÉNY
Különféle erőhatások és erőtörvények
Munka, energia teljesítmény.
Az elhajított testek, a bolygók szabad mozgást végeznek. Pályájukat nem befolyásolja semmilyen kényszerítő hatás. A lejtőn leguruló golyó mozgása kényszermozgás,
Fizikai értelemben akkor történik munkavégzés, ha egy testre erő hat, és ennek következtében a test az erő irányába elmozdul. Pl.: egy testet függőleges.
Ütközések Ugyanazt a két testet többször ütköztetve megfigyelhető, hogy a következő összefüggés mindig teljesül: Például a 2-szer akkora tömegű test sebességváltozásának.
DINAMIKA (ERŐTAN) Készítette: Porkoláb Tamás. A TESTEK TEHETETLENSÉGE Miben mutatkozik meg? -Nehéz mozgásba hozni, megállítani a testeket – „ellenállnak”
AZ ERŐ SEBESSÉGVÁLTOZTATÓ HATÁSA
Energia: Egy test vagy mező állapotváltoztató képességének mértéke. Egy testnek annyi energiája van, amennyi munkát képes végezni egy másik testen,
Az óra témája: Súrlódási erő.
Munka, energia teljesítmény.
Newton II. törvényének alkalmazása F=m*a
Balthazár Zsolt Apor Vilmos Katolikus Főiskola
Hogyan mozog a föld közelében, nem túl nagy magasságban elejtett test?
Az erőhatás és az erő.
Áramlástani alapok évfolyam
11. évfolyam Rezgések és hullámok
Termikus és mechanikus kölcsönhatások
A tehetetlenség törvénye. A tömeg.
4. Tétel Erőhatás, erő, tömeg.
Fizikai értelemben akkor történik munkavégzés, ha egy testre erő hat, és ennek következtében a test az erő irányába elmozdul. Pl.: egy testet függőleges.
Dinamika alapegyenlete
Súrlódás és közegellenállás
Az erő fajtái Aszerint, hogy mi fejti ki az erőhatást, beszélhetünk:
Előadás másolata:

Az erőtörvények Koncsor Klaudia 9.a

Az erő megadható az erőhatást kifejtő testet jellemző mennyiségek segítségével is. Azt a matematikai összefüggést, amely a testet jellemző mennyiségek segítségével fejezi ki az erőhatást, erőtörvénynek nevezzük. Az erőtörvény nem magára az erőhatást kifejtő testre, hanem a kölcsönhatásban részt vevő test tulajdonságaira, képességire jellemző.

Rugalmas erő /Hooke-törvény/ Fr= -D*l Rugalmas erőnek nevezzük a rugalmas testek alakváltozása közben fellépő erőt. A rugalmas erő nagysága egyenesen arányos a hosszváltozással. A rugalmas erő iránya ellentétes a hosszváltozással. A rugalmas erő egyenesen arányos a rugalmas test hosszváltozásával, de a hosszváltozással ellentétes irányú. Az arányossági tényező a rugóállandó. Ez az erőtörvény a megfeszített rugó mozgásállapot-változtató képességére jellemző. Másképp lineáris erőtörvénynek is nevezzük.

Bármely két tömeggel rendelkező test között fellép a gravitációs erő. Bármely két test között van gravitációs vonzás, amely a gravitációs erővel jellemezhető. Tömeggel rendelkező testek között fellépő kölcsönhatást Newton fogalmazta meg 1686-ban. Bármely két tömeggel rendelkező test között fellép a gravitációs erő. Ez az erő egyenesen arányos a két test tömegének szorzatával, és fordítottan arányos a két test közötti távolság négyzetével. Az arányossági tényező a gravitációs-állandó.

Súrlódási erő A súrlódás oka a felületek egyenetlensége. A felületek egymáson való elmozdulásakor a „recék” egymásba akadnak, és így akadályozzák a mozgást. Ha az érintkező felületek nagyon simák, még nehezebb a felületeket egymáson elmozdítani. Ilyenkor a tökéletes érintkezésnek köszönhetően az érintkező felületek részecskéi között kémiai kötések alakulnak ki. Így amikor a felületeket egymáson el akarjuk mozdítani, a kémiai kötéseket kell felszakítani. A súrlódás gyakran hasznos, pl. járáskor, járművek gyorsításakor, vagy amikor krétával írunk a táblára. De tapasztaljuk a súrlódás káros hatását is, pl. a fék kopása, gumiabroncs kopása, forgó alkatrészek egymáson való csúszása. Az utóbbi esetben a súrlódás csökkentésére kenőanyagot használnak.

Tapadási súrlódási erő Nyugvó, érintkező testek esetén lép fel, ha az egyikre erőt fejtünk ki, de még nyugalomba marad. A tapadási súrlódási erő mindig a húzóerővel ellentétes irányú. A nyugalmi állapotból következik, hogy nagysága mindig a húzóerő nagyságával megegyező. A tapadási súrlódási erő maximális értéke megegyezik annak a húzóerőnek az ellenerejével, amelynél a test még éppen nyugalomban van. A tapadási súrlódási erő maximális értékének a jele: , vagy . A tapadási súrlódási erő egyenesen arányos a felületeket merőlegesen összenyomó erővel, az arányossági tényező az érintkező felületek minőségére jellemző tapadási súrlódási együttható.

2. Csúszási súrlódási erő A csúszási súrlódási erő az egymáson elmozduló felületek között lép fel. Nagysága nem függ a felületek egymáshoz viszonyított sebességétől, és az érintkező felületek nagyságától. A csúszási súrlódási erő egyenesen arányos a felületeket merőlegesen összenyomó erővel, az arányossági tényező az érintkező felületek minőségére jellemző csúszási súrlódási együttható.

3. Gördülési súrlódási erő A testek egymáson könnyebben mozgathatók, ha egymáson el tudnak gördülni. Ilyenkor a felületek egyenetlenségei — mint a fogaskerekek — kiemelkednek egymásból anélkül, hogy letörnének, vagy az egész testnek meg kellene emelkedni, hogy elmozdulhasson. A gördülési súrlódási erő egyenesen arányos a felületeket merőlegesen összenyomó erővel, az arányossági tényező az érintkező felületek minőségére jellemző gördülési súrlódási együttható.

Közegellenállási erő Ha a közegben egy test mozog, akkor a közeg egy olyan erőt fejt ki rá, ami csökkenti a testnek a közeghez viszonyított sebességét. Ez a hatás a közegellenállás, amelyet a közegellenállási erővel jellemzünk. A közegellenállási erő egyenesen arányos a közeg sebességének, a homlokfelület nagyságának és a közeg és a test egymáshoz viszonyított sebességnégyzetének szorzatával, az arányossági tényező a közegellenállási tényező fele.

Nehézségi erő A szabadon eső testek g gyorsulását létrehozó erőt nehézségi erőnek nevezzük. A nehézségi erő iránya a Föld forgása miatt kissé eltér a gravitációs erő irányától.

Köszönöm a figyelmet! 