Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.

Slides:



Advertisements
Hasonló előadás
Predikátumok Dr. György Anna BMF-NIK Szoftvertechnológia Intézet.
Advertisements

Kondicionális Eddig: Boole-konnektívumok ( , ,  ) Ezek igazságkonnektívumok (truth-functional connectives) A megfelelő köznyelvi konnektívumok: nem.
5. A klasszikus logika kiterjesztése
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar
1 Előhang Világunk dolgainak leírásához gyakran használunk kijelentő mondatokat. Pl. Minden anya szereti gyerekeit. Júlia anya és Júlia gyereke Máté. Következmény:
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Logika Érettségi követelmények:
MI 2003/5 - 1 Tudásábrázolás (tudásreprezentáció) (know- ledge representation). Mondat. Reprezentá- ciós nyelv. Tudás fogalma (filozófia, pszichológia,
MI 2003/7 - 1 Az egyesítési algoritmus Minden kapitalista kizsákmányoló. Mr. Smith kapitalista. Mr. Smith kizsákmányoló.
Általános lélektan IV. 1. Nyelv és Gondolkodás.
Bizonyítási stratégiák
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
A digitális számítás elmélete
Az érvelés.
Játékelméleti alapfogalmak előadás
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.
Érvelés, bizonyítás, következmény, helyesség
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Levezetési szabályok kvantorokra  -bevezetés (egzisztenciális általánosítás, EG)  -kiküszöbölés (univerzális megjelenítés, UI)  -kiküszöbölés (EI):
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
Függvényjelek (function symbols) (névfunktorok) FOL-ban Névfunktor: olyan kifejezés, amelynek argumentumhelyeire neveket vagy in- változókat lehet írni.
A kvantifikáció igazságfeltételei
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
A logika centrális fogalmai a kijelentéslogikában Propositional logic Nulladrendű logika Általában Logikai igazság Logikai ekvivalencia Logikai következmény.
(nyelv-családhoz képest!!!
Formális bizonyítások Bizonyítások a Fitch bizonyítási rendszerben: P QRQR S1Igazolás_1 S2Igazolás_2... SnIgazolás_n S Igazolás_n+1 Az igazolások mindig.
Vegyes kvantifikáció A kvantorcsere szerepe a Henkin-Hintikka játékban: l. Mixed Sentences, Kőnig’s World. Gyakorlás: 11.5 HF: 11.4, 11.9.
Predikátumlogika.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Fordítás természetes nyelvről FOL-ra Kvantifikáló kifejezések: Néhány/Egy F   x( F(x)  …) Minden G   x( G(x)  …) Két H   x  y( H(x)  H(y)  …)
Kijelentések könyve: mindegyik oldalon egy kijelentés. Egyes igaz kijelentések axiómák. Az axiómákból bizonyítható kijelentések mind igazak, és a cáfolható.
Az informatika logikai alapjai
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Az informatika logikai alapjai
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
Ne felejtsük el: Legyen A tetszőleges kijelentés. Arra a kérdésre, hogy „A akkor és csak akkor igaz-e, ha te lovag vagy?” a lovagok is, a lókötők is.
Deduktiv adatbázisok. Normál adatbázisok: adat elemi adat SQL OLAP adatbázisok: adat statisztikai adat OLAP-SQL … GROUP BY CUBE(m1,m2,..)
Mindenki kezet fogott mindenkivel.  x  y(x kezet fogott y-nal) Biztos? Ugyanez a probléma egy másik példán: Cantor’s World, Cantor’s Sentences. Az érdekesebb.
Tananyag: Barwise-Etchemendy: Language, Proof and Logic II. Quantifiers Weblap: Fogadóóra: H 15:30-17:00, i/226.
1 Relációs kalkulusok Tartománykalkulus (DRC) Sorkalkulus (TRC) - deklaratív lekérdezőnyelvek - elsőrendű logikát használnak - relációs algebra kifejezhető.
Felosztási tétel Legyen R ekvivalenciareláció: reflexív, azaz tetsz. a-ra aRa, szimmetrikus, azaz tetsz. a, b-re ha aRb, akkor bRa, tranzitív, azaz tetsz.
Egzisztenciális gráfok Alfa-gráfok: kijelentéslogika Kijelentésszimbólumok: P, Q, R [elemi kijelentések] Egy ilyen lap (sheet) a P kijelentés állításával.
Kvantifikáció:  xA: az x változó minden értékére igaz, hogy…  a: értelmetlen. (Megállapodás volt: ̒a’, ̒b’, … individuumnevek.) Annak sincs értelme,
Az amőba játék algoritmusa. A játék  Az amőba játék, vagy ahogy Magyarországon sokan ismerik, az ötödölő, az egyik legnépszerűbb logikai játék. Sikerét.
Analitikus fa készítése Ruzsa programmal
Analitikus fák kondicionálissal
Logika szeminárium Barwise-Etchemendy: Language, Proof and Logic
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
Analitikus fák a kijelentéslogikában
Demonstrátorok: Sulyok Ági Tóth  István
Fordítás (formalizálás, interpretáció)
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
Logika előadás 2017 ősz Máté András
Atomi mondatok Nevek Predikátum
Érvelések (helyességének) cáfolata
Kijelentéslogikai igazság (tautológia):
Nulladrendű formulák átalakításai
Elméleti probléma: vajon minden következtetés helyességét el tudjuk dönteni analitikus fával (véges sok lépésben)? Ha megengedünk végtelen sok premisszás.
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
9.10 feladat: arra kellett törekedni, hogy a magyar köznyelvben is elképzelhető mondatokká fordítsuk le a FOL-mondatokat. („clear english”) Ez nem mindig.
Előadás másolata:

Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom kell egy elkötelezettséget: P igaz, avagy hamis. - Az ellenfél automatikusan a másikat választja. - Azt, hogy ki jön a következő lépésben, mindig P alakja és az elkötelezettségem együtt dönti el. - Ha pl. azt állítom, hogy “Q  R” igaz, akkor a Természet választhat Q és R között, hogy szerinte melyik hamis. A továbbiakban ennek az igazságát kell megvédenem. - Ha azt állítom, hogy hamis, akkor neki kell azt állítania, hogy igaz, tehát én választok (hogy szerintem melyik hamis). - Ha “Q  R” igazságát állítom, akkor én választhatok, hogy melyiknek az igazságát akarom negvédeni, ha pedig a hamisságát, akkor a Természet választja ki, hogy szerinte melyik hamis. -Tehát mindegyik lépés eredménye egy új (egyszerűbb) mondat és egy új elkötelezettség.

- Az igazság természetesen mindig egy adott világban értendő. - Végül eljutunk egy atomi mondatig és van vele kapcsolatban egy elkötelezettségem. Ha ez teljesül a világban, én nyertem, ha nem, a Természet. - Ha igazam van, akkor mindig van nyerő stratégiám (de veszíthetek is, ha rosszul játszom). -Ha nincs igazam, akkor a Természet fog nyerni (mert van nyerő stratégiája, és nem fog hibázni).

Játékszabályok kvantoros formulákra Ha azt állítom, hogy “  xP(x)” igaz, akkor kell tudnom mutatni egy olyan objektumot a világban, amelyre P(x) igaz. Nem biztos, hogy van neve, de adunk neki (egy új nevet akkor is, ha már van neki); legyen ez b. Tehát az eredmény: P(b) igazságát kell állítanom. Ha azt állítom, hogy “  xP(x)” hamis, akkor a Természet választ tetszése szerint egy b-t és nekem meg kell védenem P(b) hamisságát. Hasonlóképpen: ha “  xP(x)” igazságát állítom, akkor a természet választ b-t és nekem P(b) igazságát kell állítanom; ha pedig a hamisságát, akkor én választom meg az ellenpéldát, azaz azt a b-t, amelyre szerintem P(b) hamis. Példa: 9.5 feladat HF: 9.10 Cél: egy szövegfájl (9.10_vezeteknev.doc,.docx vagy.rtf) tizenkét mondattal (angol vagy magyar, tetszés szerint).

Logikai igazságok, helyes következtetések – újak és régiek  x Él(x)  x Virul(x)  x(Él(x)  Virul(x))  x Él(x)  x Virul(x)  x Él(x)   x Virul(x)  x Él(x)  x Virul(x)  x Él(x)   x Virul(x)  x Él(x)  x Virul(x)  x (Él(x)  Virul(x)) Kijelentéslogikai következmények (TautCon) Elsőrendű következmény (FOCon)

Hasonlóképpen logikai igazságokkal:  xTet(x)  xTet(x) logikai igazság (tautológia)  xTet(x)  x  Tet(x) nem logikai igazság  x(Tet(x)  Tet(x)) (FO) logikai igazság, de nem tautológia.  xTet(x)   x  Tet(x) ugyancsak FO logikai igazság, de nem tautológia.  xTet(x)   xTet(x) tautológia. Definíció: Az elsőrendű nyelv egy mondata tautológia, ill. egy következtetése tautologikusan helyes (másképp: a konklúzió tautologikusan következik a premisszákból), ha a kijelentéslogikai formája tautológia, illetve helyes kijelentéslogikai következtetési séma. Emlékeztető: a kijelentéslogikai forma úgy áll elő, ha a kijelentéslogikában tovább nem bontható részmondatokat mondatbetűkkel helyettesítjük. A tárgyalási univerzum nem lehet üres!

Algoritmus a kijelentéslogikai (truth-functional) forma előállítására az elsőrendű nyelv egy zárt mondatából: Balról jobbra elkezdjük olvasni a mondatot. Ha kvantorhoz érünk, elkezdünk egy aláhúzást, amely a kvantifikáció hatókörének végéig tart. Ha predikátumhoz érünk, aláhúzzuk azt az atomi mondatot, amelyben ő a predikátum. Ha az, amit aláhúztunk, még nem szerepelt korábban, akkor megcímkézzük egy új mondatbetűvel. Ha szerepelt, akkor azzal a betűvel címkézzük meg, amivel az azonos mondatot korábban. Ezután tovább folytatjuk az olvasást az aláhúzás végétől jobbra. Ha a formula végére értünk, kész vagyunk az annotálással. Ezután minden részmondatot a címkéjével helyettesítünk. KÉSZ. Példa: (  x(Cube(x)  y(FrontOf(x, y)  BackOf(x, y)))  (  zDodec(z)  Cube(a)))  (  xCube(x)   Cube(a))

HF: 10.3, 10.4 Centrális logikai fogalmak az elsőrendű logikában Elsőrendű logikai igazság, avagy érvényes mondat (FO validity) Elsőrendű (logikai) következmény, avagy elsőrendben érvényes következtetés Elsőrendű ekvivalencia Mindegyik a megfelelő általános fogalom specifikációja azzal a megszorítással, hogy „az elsőrendű logika konstansainak (konnektívumok kvantorok, azonosságjel) jelentéséből adódóan”. Mindegyik tágabb, mint a megfelelő kijelentéslogikai fogalom (tautológia, tautologikus következmény, tautologikus ekvivalencia). Pontosabb definíciót keresünk, elsősorban az érvényes következtetésre.