Memória: - elektromos - mágneses -optikai -MEMS

Slides:



Advertisements
Hasonló előadás
OPTIKAI LEMEZEK JELLEMZŐI, TÍPUSAI
Advertisements

Háttértárak ismertetése
Az optikai sugárzás Fogalom meghatározások
Hardver eszközök II. rész
Optikai adathordozók Történeti áttekintés
A számítógép felépítése
Napjaink háttértárolói
Háttértárak. Háttértárak A háttértárak működési elve A háttértárak feladata: Az éppen nem használt adatokat és programokat háttértárolókon tároljuk.
Tisztelt Hölgyeim és Uraim! Budapest, Előadó: Dr. Mihalik József
Optikai lemezek.
Külső memóriák.. 1.Hard Disk  Egy számitástechnikai adattároló berendezés. Az adatokat kettes számrendszerben tárolja.  Az adatokat mágnesezhető réteggel.
Az optikai tárolók Az optikai tárolórendszerekre jellemző, hogy az írás és olvasás lézersugárral történik. Az optikai tárolókat több tulajdonságuk markánsan.
Készítette: Ferenczi Krisztián (FEKSAAI.ELTE). Optikai lemezek jellemzői Az írás és olvasás lézersugárral történik. Az optikai tároló felületén az adatok.
Tárgy: Számítógépes alapismeretek Készítette: Horti Tamás (HOTSAAI.ELTE)
M AGNETO - OPTIKAI H ÁTTÉRTÁRAK Készítette: Dobos Rhea Szilvási Orsolya.
DISZKréten az adathordozókról
Optikai tárolók Segédanyag 9. osztályosok számára Készítette: Dobi Attila,
Készítette: Sebestyén Dávid SEDRAAI.ELTE. Az adathordozók Ha nincs hálózatban a két számítógép, amik között adatot szeretnénk átvinni Vagy a digitálisan.
Optikai lemezek Típusai, jellemzői Rajnai Andrea Rajnai Andrea.
Háttértárak.
Optikai tárolók A digitális adatok optikai tárolására alkalmas egyik eszköz a kompakt lemez (CD = Compact Disk) amelynek legismertebb formája a csak olvasható.
Készítette: Simon Anett 9.c
Készítette: Verebélyi Balázs Informatikus Könyvtáros szak, 1. évfolyam Neptun kód: VX46VV.
Memóriák.
OPTIKAI LEMEZEK JELLEMZŐI, TÍPUSAI Készítette: Czeglédy Kitti - CZKSAAI.
Számítógép memória jellemzői
Amit az adathordozókról tudni kell
Készítette: Solymosi Roland EHA-Kód: SORSSAI.ELTE
Optikai adattárolás Varga Viktor - VAVSAAI.ELTE. Tartalom Az optikai adattárolás - Jellemzők - Kifejlesztése - Működés - Adatszerkezet - A jövő - Források.
Minden, amit az adathordozókról tudni kell Számítógépes alapismeretek, első beadandó feladat Készítette: Eichhardt Iván.
Háttértárak Informatika tananyag.
Optikai meghajtók. CD (Compact Disc) 1978 Philips – LaserVision –Filmek optikai tárolón –Kevés siker 1982 – Philips+Sony –audio tárolásra –Bakelit leváltása.
Napjaink háttértárolói
Felkészítő tanár: Széki Tibor tanár úr
Napjaink háttértárolói
Memóriák típusai, jellemzői
Optikai lemezek jellemzői, típusai
Minden, amit az adathordozókról tudni kell
Média tárolóeszközök. A CD  A CD(compact disk) ált. 700Mb kapacitású  Optikai tároló  Hang, kép, valamint adat digitális formátumú tárolására használatos.
Készítette: Aranyos Edit & Fazekas Sarolta A CD-rom története.
Mikroelektronikaéstechnológia Bevezetõ elõadás Villamosmérnöki Szak, III. Évfolyam.
Állománykezelők és optikai elven működő háttértárak.
Háttértárak.
Optikai tárolók CD, DVD.
Háttértárak és adathordozók
A számítógép tárolóeszközei
A háttértárak felépítése és működése
 A ROM angolul: Read-Only-Memory. ( csak olvasható memória)  Egy olyan elechtronikai eszköz, amely csak olvasható adatok tárolására alkalmas.  Programok.
Háttértárak.
Számítógépes alapismeretek beadandó. A CD-kről 1979, Philips és Sony Első lemez: augusztus mm átmérőjű korong Infravörös lézer Spirál EFM.
Amorf fényérzékeny rétegstruktúrák fotonikai alkalmazásokra
Hang anyagok tárolása Magnószalag Magnókazetta Bakelitlemez CD
Minden, amit az adathordozókról tudni kell
Optikai lemezek Készítette: Tóth Gábor TOGSABI.ELTE.
Optikai lemezek jellemzői, típusai
Mai számítógépes perifériák
O PTIKAI LEMEZEK ÉS OLVASÓ FEJEK. O PTIKAI L EMEZEK CDDVDBD Külső átmérő120 mm Belső átmérő46 mm Lemez vastagsága1.2 mm2 x 0.6 mm mm Lyukak hossza0.83µm0.4.
A számítógép felépítése
Kialakulásuk  1960-as évek közepétől több cég egymástól függetlenül fejleszti  Katonai célokra készül  Létrehozás célja: A mágneses tárolóknál nagyobb.
Háttértárak. Csoportosítás zMágneses elvű yFloppy yWinchester yszalagos egységek zOptikai elvű yCD yDVD zEgyéb ylyukkártya.
Ma használatos háttértárakat és azok tárolási technológiái (Informatika érettségi 5.tétele) Készítette:Dobrovolni Edit 12.c.
Optikai háttértárolók. Háttértárolók Olyan adattároló eszközök, melyek a tápfeszültség kikapcsolása után is megőrzik a rá írt adatokat. Optikai háttértárolók:
Ismétlés Memória RAM  Véletlen elérésű memória ( Random Access Memory)  Tárolja a CPU által végrehajtandó programokat és a feldolgozásra váró adatokat.
6. Optikai adattárolás Alapfogalmak, eljárások Fényérzékeny anyagok, fotográfia Holográfia Alakfelismerés Digitális jelírás,
Adatok tárolása. Tárolók Félvezető tárak RAM Operatív tár Cache tár Regiszterek CMOS RAM ROM BIOS Mágnestárak Mágneslemez Hajlékony lemez Merevlemez MágnesszalagMágneskártya.
Be-/Kimeneti perifériák (háttértárak)
Optikai mérések műszeres analitikusok számára
A számítógép tárolóeszközei
Tároló perifériák.
Optikai mérések műszeres analitikusok számára
Előadás másolata:

Memória: - elektromos - mágneses -optikai -MEMS ELEKTRONIKAI TECHNOLÓGIA 5. Fotonikai elemek és technológiák 5/3 Memória: - elektromos - mágneses -optikai -MEMS

Jel (információ) jel (tárolt) jel (információ) Jel (információ) : elektromos impulzus, elektromágneses hullám, (fény!), mágneses tér, részecske, hő, vegyi hatás(tinta?), mechanikai erő. Jel (tárolt): lokalizált elektronok (elektromos tér, domének, polarizáció), hibák (vakanciák), mágneses domének , tőrésmutató, elnyelés, visszaverés, polarizáció, mechanikai deformáció Írás, tárolás, leolvasás (tőrlés?) Paraméterek: energia/jel,bit, cm2,.. sebesség (jel/s) (az írásnál és a leolvasásnál, hozzáférhetőség) sűrűség (jel/S) stabilitás vagy reverzibilitás, időállandó ár/jel !!!!

memóriák Hierarchia: 1,-2-,3-szint, off-line Karakterisztika: illékonyság, differenciálhatóság, hozzáférhetőség, címzés, kapacitás Teljesítmény Technológia: Félvezető Mágneses, Optikai, Papír más

Technológia: lehetőleg az ismert mikroelektronikai !!!! Főbb típusok: - elektromos : RAM, ROM, EEPROM, Flash…. Tranzisztor! - mágneses: HDD, MD, magnetooptikai,…..Mágneses domén - optikai : CD, CD-DVD R, RW…text.. Optikai változások - mechanikai : számológép, MEMS, AFM,… Deformáció + más kombinációk, a kökorszaktól a mai napokig……. Technológia: lehetőleg az ismert mikroelektronikai !!!!

Tárolási kapacitások fejlődése-integrált elektronika

Elektromos: DRAM- dynamic random access memory, SRAM-static RAM CMOS-complementary MOS (p-MOS and n-MOS pair) ROM, PROM , EEPROM, FLASH

Mágneses: Ferromágnesesség: Az atomi mágneses momentumok A doménok térbeli képződése a rendszer összenergiáját minimalizálja A Bloch-falban a mágnesezettségi irány megváltozása sok dipóluson elosztva valósul meg dBW(Co)  60 nm (kb. 200 atomsík) Ferromágnesesség: Az atomi mágneses momentumok a Weiss-féle doméneken belül maguktól párhuzamosra állnak be A mágneses momentumok párhuzamos irányba, ellentétes irányba állása

HDD

Buborék memória

OPTIKAI Az információ ~80 % az optikai csatornán jut át hozzánk Az információt valós időléptékben feldolgozhatjuk vagy tároljuk és későbben dolgozzuk fel, alkalmazzuk Tárolás: analóg és digitális képek IC mikroelektronika fényképezés ~ holográfia CD, DVD optoelektronika Általános probléma: többet, gyorsabban, biztonságosabban és olcsóbban és láthatóan…..

Idő Ár Elsődleges tárolás Másodlagos tárolás

elektronok mozgása atomok mozgása elektrofotográfia Ag-Hal fázisátalakulások (a-Se, a-Si:H, ZnO, szerves) (VO2 , SmS, polimerek) fotókrom (KCL, üvegek) szerkezeti változások fotórefrakció effektus (a – a, a – k, k - a, sűrűség) (LiNbO3 : Fe+³, Sn2P2S6) (AsSe, Ge-Te-Sb, ChG) magnetooptikai effektus diffuzió, összetétel változása (MnBi, CrTe, Y3Fe2O12 ) (Ag-As2S3, Se/As2S3 MLS )

Mit észlelünk? Az optikai jellemzők változását  (abszorpció), R (visszaverődés), n (refrakció), P (polarizáció) d (méret) [ amplitúdó] vagy [amplitúdó-fázis ] optikai írás Választhatunk: egy- vagy többlépcsős folyamat - egy lépcső, valós idő

Az emberi szem Érzékenység: 10-8 – 104 W/m2 = 400 – 700 nm

sűrűség ( max. ~100 Mbit/cm² ) érzékenység ( 1 J/cm², 1 nJ /bit ), hullámhossz-tartomány (1 - 2 ) moduláció (0 ~10-100, R/R0  5, n ~0.1-0.001, d ~200 nm) ismételhetőség (  1 millió átírás) de…!!! Stabilitás (több évtized is!) - Gyorsaság (adattovábbítás) ( 10 – 100 MHz……)

Optikai relief (kép) Amplitúdó moduláció Fázis moduláció Fázis moduláció (méret)

Optikai írás (memória): folyamatok FOTOKÉMIA: klasszikus fotográfia, litográfia (fejlett technológia, kiváló érzékenység, de : nedves folyamatok, kétlépcsős eljárás, nem stabil…) FOTÓFIZIKA: elektrofotográfia, DVD, CD (kompatíbilis a többi mikroelektronikai eszközzel, nagy a sűrűség, stabilitás, másolhatóság…)

Fotokémiai folyamatok A fény (hullám, kvantum) hatására kémiai folyamatok indulnak be az anyagban : -fotoszintézis oxidálás-redukció (donor-akceptor komplexumok átalakulása) polimerizáció Ag-Hal. anyagokban az ezüst kiválása ( klasszikus fotográfia) A képet általában egy külön folyamatban előhívják Figyelem: alapjában itt is a fizikai folyamatok (elektronok gerjesztése, kötések átalakulása) határozzák meg a folyamatokat

Ag-Hal fotográfia (az ezüst szemcsék képződése) Ag-szemcsék + zselatin, exponálás előtt Ag-szemcsék előhívás után AgBr ionok felbomlása a fény hatására (1 !!), Ag+ és J-. Neutrális Ag, kristályok növekedése (+ előhívó= erősítés! 106) Bitek max. sűrűsége: nmax1/ 4r2, r- a mag sugara

Fotokémia Fotó-oxidáció, polimerizáció,… Reoxán oxidációja Stilben modifikálása

Fotokémia fotófizika Különböző Corning-típusú fotokróm üvegek sötétedése és kivilágosodása. Mechanizmus: 50-200 nm Ag kristályok növekedése és lebomlása, halogének részvételével

A fotókróm üvegek sötétedése Lassú folyamat E= 1.0 J/cm² Kvantum hatásfok < 1

Fotokémia fotófizika Bakteriarodopszin- egy unikális szerves fényérzékeny anyag Technológiája: áttetsző üveg hordozón vastag rétegeket alakítanak ki BR+zselatin mátrix keverékből 10-7 - 10 s !

Fotofizika: A fény (hullám, kvantum) hatására fizikai folyamatok indulnak be az anyagban : -elektronok gerjesztése elektron-fonon kölcsönhatás, melegítés Fázisátalakulások A képet általában nem kell előhívni, illetve lehet, különböző reliefek előállítása céljából

Jelenség: spin-foton kölcsönhatás, FOTOMÁGNESES ANYAGOK PÉLDÁJA Jelenség: spin-foton kölcsönhatás, a fény polarizációs síkjának a forgatása =V.B.l (V- Verdet - állandó) Írás: a Hmax csökken, mivel a fókuszált lézersugár melegíti a réteget MnBi: T=360 C Gd3Fe2O12 réteg: +T=3 C, Q1 mJ /cm²

Fázisátalakulások példája Védő VO2 Tükör Hordozó Érzékenység 0.3 J/cm² Reverzibilis! (RW CD)

Fotófizikai folyamatok: egyszerű hőhatások Q=c m T + m, egy nagyon egyszerű modellben, hő-veszteség nélkül , kiszámítható az egy bit írásához szükséges energia Abláció: kiégetünk, elpárologtatunk egy-egy pontot DE: el kell gondolkodni a felbontásról, az írás sebességéről, a zajokról, a stabilitásról!

Fotófizikai folyamatok: a sokoldalú kalkogenidek példája 1. 2. 1,2/s 3. ChG 1 ChG 2 ChG, 1,2? NML Rec. Rec. Rec. Rec. Read Read Read Read Erase, thermo Erase Erase ? Erase ? 4. Etching, Copy Embossing

Chalcogenide glasses for optical recording: As-based : As2S3, AsSe,… Ge-based : GeS, GeSe, Ge2Se3, … pure or doped Se, SexTe1-x, , … multicomponent materials: Ge-Sb-Te, … Main parameters: spectral range, changes of α, n, R, d !? spatial resolution ! (μm nm) reversibility – stability recording in a real time scale As – Se system is the simplest, model one !

------- VIII ------- ------- 8 ------- Kalkogenidek- S,Se, Te-tartalmú anyagok (minket az amorf kalkogenidek érdekelnek) Periódus Csoport**           1 IA 1A 18 VIIIA 8A 1 1 H 1.008 2 IIA 2A 13 IIIA 3A 14 IVA 4A 15 VA 5A 16 VIA 6A 17 VIIA 7A 2 He 4.003 2 3 Li 6.941 4 Be 9.012 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F 19.00 10 Ne 20.18 3 11 Na 22.99 12 Mg 24.31 3 IIIB 3B 4 IVB 4B 5 VB 5B 6 VIB 6B 7 VIIB 7B 8 9 10 11 IB 1B 12 IIB 2B 13 Al 26.98 14 Si 28.09 15 P 30.97 16 S 32.07 17 Cl 35.45 18 Ar 39.95 ------- VIII ------- ------- 8 ------- 4 19 K 39.10 20 Ca 40.08 21 Sc 44.96 22 Ti 47.88 23 V 50.94 24 Cr 52.00 25 Mn 54.94 26 Fe 55.85 27 Co 58.47 28 Ni 58.69 29 Cu 63.55 30 Zn 65.39 31 Ga 69.72 32 Ge 72.59 33 As 74.92 34 Se 78.96 35 Br 79.90 36 Kr 83.80 5 37 Rb 85.47 38 Sr 87.62 39 Y 88.91 40 Zr 91.22 41 Nb 92.91 42 Mo 95.94 43 Tc (98) 44 Ru 101.1 45 Rh 102.9 46 Pd 106.4 47 Ag 107.9 48 Cd 112.4 49 In 114.8 50 Sn 118.7 51 Sb 121.8 52 Te 127.6 53 I 126.9 54 Xe 131.3 6 55 Cs 132.9 56 Ba 137.3 57 La* 138.9 72 Hf 178.5 73 Ta 180.9 74 W 183.9 75 Re 186.2 76 Os 190.2 77 Ir 190.2 78 Pt 195.1 79 Au 197.0 80 Hg 200.5 81 Tl 204.4 82 Pb 207.2 83 Bi 209.0 84 Po (210) 85 At (210) 86 Rn (222) 7 87 Fr (223) 88 Ra (226) 89 Ac~ (227) 104 Rf (257) 105 Db (260) 106 Sg (263) 107 Bh (262) 108 Hs (265) 109 Mt (266) 110 --- () 111 --- () 112 --- () 114 --- () 116 --- () 118 --- () Lantanidok* 58 Ce 140.1 59 Pr 140.9 60 Nd 144.2 61 Pm (147) 62 Sm 150.4 63 Eu 152.0 64 Gd 157.3 65 Tb 158.9 66 Dy 162.5 67 Ho 164.9 68 Er 167.3 69 Tm 168.9 70 Yb 173.0 71 Lu 175.0 Actinidok~ 90 Th 232.0 91 Pa (231) 92 U (238) 93 Np (237) 94 Pu (242) 95 Am (243) 96 Cm (247) 97 Bk (247) 98 Cf (249) 99 Es (254) 100 Fm (253) 101 Md (256) 102 No (254) 103 Lr (257)  

Fénymásolás Fotovezető anyag: a-Se, ZnO, AsSe, CdS, a-Si:H, Szerves anyagok Lényeg: egy fotovezető, de magasellenállású anyag, amelyet korona-kisüléssel töltenek fel , elektrosztatikus képeket alkotnak a jelek megvilágíítása alapján ( elektrostatikus relief a felületen), majd festő porral hívják elő. A port átviszik egy papir lapra amelyet majd fixálnak (melegítéssel rátapasztják a papirra).

töltés exponálás előhívás fázismoduláció olvasás Fotofizikai folyamatok: felületi domborzatok fototermoplasztokban töltés exponálás előhívás fázismoduláció olvasás Fázis-moduláció, holográfia Anyagok: Egy réteg (polyvinilkarbazol ), vagy heterostruktúra, injekciós réteggel ( polyvinilkarbazol + CdS, As2Se3, STe,…) Felbontás  1000 1/mm, érzékenység 108 cm²/J ha 1% DE (max. diffrakciós hatásfok DE  20% , felületi visszaverődési mód) Alkalmazás: interferometria, adatrögzítés

Fotofizikai folyamatok: elektronállapotok és szerkezeti változások A szerkezet változásával változik az elektronok spektruma, és ez már látható az optikai elnyelés változásában

Optikai írás amorf szerkezetben

Fotofizikai folyamatok: alkalmazások sokszorosításban Kétlépcsős folyamat: (szelektív maratás NaOH, vagy más oldatokban, illetve plazmával ) Írás– szelektív maratás –felületi domborzat Írás (Ag -diffúzió)- maratás - domborzat Mold gyártása – (Ni) – másolás (rácsok, CD, vagy akár kis sorozat névjegy, stb.) Mátrix (mold) másolás Fém (Ni) Eredeti írás

CD szerkezete és gyártása Az optikai adatrögzítés és leolvasás fejlődésében mérföldkövet jelentett a Philips és Sony által kidolgozott Compact Disc Digital Audio (CD-DA) szabvány. Ez a mai napig minden CD formátum alapja. 1980-ban elkezdődött a hangtechnika digitalizálódása. A szabványosított optikai adattároló lemezek családfája több mint 30 féle CD formátumot jelent. A szórakoztató elektronikai piacon a kompakt lemezek (CD-DA gyakran CD-A-nak nevezik) terjedtek el. Ezek 120 mm átmérőjű és 1,2 mm vastagságú, áttetsző makrolon (polikarbonát) műanyagból fröccsöntéssel készült korongok. A CD-DA kiszorította a hangtechnikából a mikrobarázdás lemezeket, amelyeket hasonlóképpen „préselték”.

anyaga= polikarbonát: Létezik mini-változat is, 80 mm szélessége = 33 mm anyaga= polikarbonát: - kitűnő a fényáteresztő képessége, - nem öregszik. vastagság=1,2 mm Létezik mini-változat is, 80 mm

A CD-DA szerkezete a CD lemez címke oldala tükröző réteg Al d=0,1 μm a címke felöl pit (gödör) míg az olvasási irányból dudor (bump) védőlakk (akril) réteg d= 5…10 μm land míg az olvasás felöl pit 0,11 μm 1,2 mm 15 mm v 0,5 μm polikarbonát korong átmérő=120 mm (4.8 inch) 1,2 m/s kerületi sebesség olvasó lézersugár hullámhossz = 780 nm A bump-ok belülről kifelé haladó archimedesi spirál alakú nyomvonal (track) mentén helyezkednek el (a spirál hosszúsága > 5 km). (kisméretű félvezető lézerdióda) A CD-DA rögzíthető 74 perc hosszúságú 44,1 kHz x 16 bit felbontású sztereó zene.

fényvisszaverő réteg (Al) gödrö(pit-ek) 1,6 µm bump-ok A bump-ok szélessége 0,5 μm; hosszúsága min. 0,833 μm; vastagsága 0,11 μm ; menetemelkedése: 1,6 μm. A 74 perc hosszúságú zenei CD lemez kapacitása : 44.100 minta/csatorna/sec x 2 bit/minta x 2 csatorna x 74x60 sec = 783.216.000 bit A normál CD-DA adatátviteli sebessége = 4,3219 Mbit/s (a 4x CD meghajtók adatátviteli sebessége 4,8 Mbit/s).

CD olvasófej felépítésének vázlata: Működés közben a lézerfény, áthaladva a tükörprizmán, fényereje a felére csökken. A CD-ről visszaverődő sugár fényereje szintén a felére csökken és az már nem elegendő az Al tükörfelületen való átjutáshoz. A kiinduláshoz képest csak negyedakkora fényerejű lézerfény jut a fotódetektorra. Léteznek más elrendezések is, egészen az integrált optikai eszközökig fényerő

A CD lemezeken az információ a spirális nyomvonal mentén különböző hosszúságú domborulatok (bump-ok) és sík részek sorozata. A kétféle felületről a lézersugár különböző intenzitással verődik vissza. Az intenzitás különbség megfelelő digitalizálás után fogja megadni a bináris 0 vagy 1 értéket. A CD-re az információt meghatározott kódrendszerben viszik fel. Nyomvonal közepe Az információ leolvasásához a lézerdióda egyetlen sugárnyalábjából előállított három lézersugarat használják. A spirális alakú nyomvonal ( a bump-ok) közepére fókuszált lézersugártól balra és jobbra egy-egy segéd lézersugár is található. Ha az olvasófej nyomvonal-követése helyes, akkor a hat-nyolc fotodiódából álló olvasófej az oldalsugarak jeleit egyformának érzékeli. Ha nem, a rendszer működteti a nyomvonaltartó szervorendszert. bump 1,6 µm

Lemez helye Mozgató egységek Leolvasó Lemez-meghajtó Lézer-lencse A CD meghajtó felépítése: A lézerdióda és a fotódetektor elektronikája egy kocsin (laser pickup) helyezkedik el, a szükséges optikával és fókuszáló szervomechanikával együtt. Ezt a kocsit egy sávkövető szervomechanika mozgatja lineárisan a lemez középpontjától kifelé, sugárirányban a lemez síkjával párhuzamosan. Lemez helye Mozgató egységek Leolvasó Lemez-meghajtó Lézer-lencse Szervo-motor

A CD-ROM gyártástechnológiája: 1. Premastering: a CD-ROM-on tárolandó információt feldolgozzák a mesterlemez által megkövetelt formátumban, digitális adathordozón (pl. CD-R lemezen) . 2. Mastering: üveglemezen a szubmikronos struktúra kialakítása (az üveglemezre felvitt fényérzékeny rétegen lézernyalábbal felírják a jeleket és maratással kialakítják a pit-eket,). 3. Electroforming: több lépéses galvanizálással előállítják Ni rétegből a nyomólemezt. 4. Préselés : a fröcssöntött 1,2 mm vastagságú polikarbonát korong egyik oldalán előállítják a mintázatot (bump-okat). 5. Reflektáló réteg (pl. Al) gőzölése majd ezt követően akril védőréteg felvitele és kikeményítése a korongon. 6. Feliratozás (pl. szitanyomtatás) és csomagolás.

Újraírható (RW) lemezek hőmérséklet visszaverődés Író impulzus Az írott jelek kialakulása Írás-törlés-írás folyamat vázlata

Újraírható, DVD lemez: hibák, törlés, stabilitás -Al-SiO2-ZnS-SiO2-GeTe-Sb2Te3-Sb-ZnS-SiO2— R=18-30%, R=0,6 , P=7-17 mW, r0,7 m, S26 MB/s polimer LÉZER Ohta T., JOAM, v.3, p.609(2001)

UV kötésű védőlakk v= 3..5μm A CD-R rétegszerkezete és írása: 1,6 μm címke réteg v= 30 μm UV kötésű védőlakk v= 3..5μm Au tükröző réteg v=50 nm kristályos infor. réteg v= 100-300 nm 0,11μm barázda (groove) amorf rész 0,6 μm 1,2 mm (~250 °C-on alakul ki). polikarbonát hordozó A lézerfény hő hatására az információ tároló kristályos szerves réteganyag amorffá válik. Az amorffá vált rész a kristályossal ellentétben rosszul veri vissza a fényt. lézer dióda: - olvasás: 1mW, - írás: 15..40 mW. + fáziseltolás

Lemez részének szerkezeti vázlata

Napjainkban legelterjedtebben az egyoldalas, egyrétegű 4,7 GByte kapacitású lemezeket használják. A DVD lemez két darab 0,6 mm vastagságú összeragasztott korong. Így az adattároló réteg(ek) a lemez közepén helyezkednek el. A DVD lemezek választéka: 8 óra CD minőségű zene a kapacitása a DVD filmek többsége (az alsó inf. tároló réteg félig áteresztő) 8 órás filmanyag (lejátszáskor a lemezt fordítani kell)

Holografikus CD Az ilyen lemezen egy „pont” egy oldal információt tartalmaz, amelyet úgy olvasunk le, mint egy hologramot

Phase-change random acces memory (Ovonix Unified Memory)

Hologramok: optikai alapok Két sík hullám interferenciója: IR(x)= 2I(1+cos kx2 ) 

Hologram

Hologram: diffrakciós hatásfok 1

Hologramok írása: sík hullám mért Írás sík hullámokkal számított Fény diffrakciója a huzalon: fénykép és intenzitás-eloszlás

Hologramok írása: fókuszált fény Fourier-transzformáció:

Fourier-transzformáció

Optikai korrelátor

Neurális hálózatok kialakítása

3D hologramok Denisjuk-féle hologram: művészeti alkotások másolása, teljes térhatás

3D hologram Multiplexelés

Felületi sűrűség / adatközvetítés sebessége