Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék 2011. február 17.

Slides:



Advertisements
Hasonló előadás
Deduktív adatbázisok.
Advertisements

Predikátumok Dr. György Anna BMF-NIK Szoftvertechnológia Intézet.
A mondatelemzés modern útjai
Extenzionális mondatfunktorok
A matematikai logika alapfogalmai
5. A klasszikus logika kiterjesztése
A mondat szintagmatikus szerkezete
LOGIKA.
Matematikai logika.
Characteristica universalis 3. Logikai alapfogalmak.
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
Logika 3. Logikai műveletek Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 24.
LOGIKA.
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Logika Érettségi követelmények:
Szintaktikai elemzés február 23..
Az informatika logikai alapjai
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
Logika 7. A klasszikus logika kiterjesztése Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 24.
Characteristica universalis
Logika 6. Logikai következtetések
Bevezetés a matematikába I
Halmazelmélet és matematikai logika
Halmazok Összefoglalás.
1. Bevezetés a tárgy célja: azoknak az eszközöknek és módszereknek a megismertetése és begyakoroltatása, melyek az érvelések megértéséhez, elemzéséhez,
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
Boole-algebra (formális logika).
A számítógép működésének alapjai
Logika 4. Logikai összefüggések Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 3.
Logikai műveletek.
Érvelés, bizonyítás, következmény, helyesség
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Függvényjelek (function symbols) (névfunktorok) FOL-ban Névfunktor: olyan kifejezés, amelynek argumentumhelyeire neveket vagy in- változókat lehet írni.
A kvantifikáció igazságfeltételei
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
A logika centrális fogalmai a kijelentéslogikában Propositional logic Nulladrendű logika Általában Logikai igazság Logikai ekvivalencia Logikai következmény.
(nyelv-családhoz képest!!!
Characteristica universalis 3. Logikai alapfogalmak.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék.
Predikátumlogika.
Logika.
I. Eltér-e az alany-állítmány viselkedése az alárendelő szintagmáktól? Három helyen azt mondhatjuk, igen, ez a régi elmélet mellett szól. (Oda-vissza kérdezhetőség,
Logikai bevezető Forgács Gábor Ellenőrizzük a következő következtetéseket Egyetlen francia versenyző sem jutott be a döntőbe. Denise francia.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Logikai műveletek és áramkörök
Az informatika logikai alapjai
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
Az informatika logikai alapjai
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
Deduktiv adatbázisok. Normál adatbázisok: adat elemi adat SQL OLAP adatbázisok: adat statisztikai adat OLAP-SQL … GROUP BY CUBE(m1,m2,..)
Tananyag: Barwise-Etchemendy: Language, Proof and Logic II. Quantifiers Weblap: Fogadóóra: H 15:30-17:00, i/226.
Kvantifikáció:  xA: az x változó minden értékére igaz, hogy…  a: értelmetlen. (Megállapodás volt: ̒a’, ̒b’, … individuumnevek.) Annak sincs értelme,
A szintagmák (szószerkezetek).
Logika.
Logika szeminárium Barwise-Etchemendy: Language, Proof and Logic
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
Logika előadás 2017 ősz Máté András
Atomi mondatok Nevek Predikátum
Érvelések (helyességének) cáfolata
Nulladrendű formulák átalakításai
2. Logikai alapfogalmak Gregor Reisch 1503
Bevezetés a matematikába I
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
Előadás másolata:

Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.

A logikai szerkezet Nyelvtani mondat  Logikai mondat (explicit és egyértelmű információk) Grammatika  Logikai grammatika (a felépítés szabályai) A logikai mondatok alkatrészei: – Logikai alkatrészek (logikai jelek) – Nem-logikai alkatrészek (betűjelek) = olyan nyelvi kifejezések, amelyeket a logikai kifejezések kapcsolnak össze  logikai szerkezet (pl. ‘ha p, akkor q’)

Logikai elemzés A logikai szerkezet nem a nyelvi kifejezések szembeötlő szerkezete A logikai szerkezetet a logikai elemzés bontja ki, illetve alkalmazza nyelvi kifejezésekre Mélysége az elemzés céljától függ Elvileg bármely lehetséges nyelvi kifejezés logikai szerkezete feltárható – A logika mesterséges nyelv, ezért le kell mondani a természetes nyelvek hajlékonyságáról – Minél mélyebben tárjuk fel a logikai struktúrát, az annál bonyolultabb, összetettebb, kezelhetetlenebb lesz

Nem-logikai alkatrészek Valamiről (alany) állítunk valamit (állítmány) Logikai mondatban: – alany  individuumnév (1. tulajdonnév, 2. leírás vagy deskripció, 3. névmások) – állítmány  predikátum lehet összetett vagy bővített is argumentuma az individuumnév argumentumszám – egyargumentumú : tulajdonságot rendel – többargumentumú : viszonyt létesít tárgyalási univerzuma terjedelme (extenziója)  faktuális értéke függvényként működik

Példák András ír. Vagy: András levelet ír. – András : individuumnév (tulajdonnév) – ír : predikátum – levelet ír : összetett vagy bővített predikátum – egyargumentumú a predikátum András írja a levelet. – András, levél : individuumnév – írja : predikátum – Két argumentumú a predikátum Miskolchoz Debrecen közelebb van, mint a fővárosunk. – Miskolc, Debrecen : individuumnév (tulajdonnév) – fővárosunk : individuumnév (deskripció) – közelebb van : predikátum – több-, háromargumentumú a predikátum

„András és a barátom húga ír.”

Jelölések A logikai törvények megfogalmazásakor a formális logikában betűjeleket: paramétereket használunk: – mondatparaméterek: p, q, r – névparaméterek: a, b, c – individuumváltozók: x, y, z – predikátumparaméterek: F, G, H – egy p logikai mondat felbontása: aF, vagy xG – formulák („blanketták”): A, B, C pl.: (… & …) – premisszahalmaz: P, a levont konklúzió: K – bármely paraméterünk indexálható, pl.: p 1 – segédjelek: összetartozó, egységet képző kifejezések: ( … ) premisszák lehatárolása, a premisszahalmaz megadása: { … }

Példák Szegedre megyek. → mondatparamétere: p Utaznom kell. → mondatparamétere: q Ha Szegedre megyek, utaznom kell. Szegedre megyek. Utaznom kell. → mondatparaméterekkel: ‘ha p, akkor q’; p; q Andrea szorgalmasan jegyzetel. – Andrea : individuumnév, meghatározott, névparamétere: a – szorgalmasan jegyzetel : összetett predikátum, predikátumparamétere: F – a teljes mondat jelölése: aF Minden élő ember lélegzik. – Minden élő ember : individuumnév, nem meghatározott, individuumparamétere: x – lélegzik : predikátum, predikátumparamétere: G – a teljes mondat jelölése: xG

Példák Egy A formula: (… & …), kitöltési lehetőségek: – Tél van és hideg. – Előadáson vagyunk és tanulunk. Kizárt harmadik törvénye formulával:  (p  ~p) – Andrea vagy itt van az előadáson vagy nincs itt. Ellentmondásmentesség törvénye formulával:  ~(p & ~p) – Andrea nem lehet egyszerre itt is és máshol is. Nem igaz, hogy esik az eső és süt a nap. – Nem igaz, hogy ( (esik az eső) és (süt a nap). ) – ~ ( p & q ) Ha sztrájkolnak a vasutasok, akkor nem járnak a vonatok. Sztrájkolnak a vasutasok, ezért nem járnak a vonatok. – {Ha sztrájkolnak a vasutasok, akkor nem járnak a vonatok. Sztrájkolnak a vasutasok.} (tehát) (Nem járnak a vonatok.) – {p; q}  r

Funktorok Logikai funkcióval bíró nyelvi eszközök, amelyek segítségével átalakítások végezhetők: – Predikátum = logikai név  logikai mondat pl. ‘Péter fut’ – Névfunktor = név  név pl. ‘Péter anyja’ – Mondatfunktor = mondat  mondat pl. ‘Péter tanul, mivel jó eredményt akar elérni.’ A predikátumnál tárgyalt jellemzők érvényesek argumentumhely, argumentumszám tárgyalási univerzuma, terjedelme (extenziója) függvényként működik → igazságfüggvény

Igazságfüggvény Egy vagy több állításból (a bemeneti értékekből) képez összetett állítást oly módon, hogy az eredmény (a kimenet) igazságértékét a komponensek (a bemeneti értékek) igazságértékei egyértelműen meghatározzák – számuk elviekben végtelen – a logika nevesít közülük néhányat, pl. negáció, konjunkció, alternáció stb. ← logikai műveletek – ezek kombinációjával bármely logikai összefüggés leképezhető – ezek képezik a logikai mondatok logikai alkatrészeit (logikai szavak, logikai jelek vagy logikai konstansok) – ezek rendezik a mondat nem-logikai alkatrészeit logikai struktúrába