A fésűs meghajtó Nézzük meg, hogy mi a legcélszerűbb kialakítása az elektrosztatikus mozgató szerkezetnek! Céljaink: nagy erőhatást szeretnénk, tehát dC/dx.

Slides:



Advertisements
Hasonló előadás
11. évfolyam Rezgések és hullámok
Advertisements

Rezgések kölcsönhatása
ELEKTRONIKAI TECHNOLÓGIA 2.
SZILÁRD ANYAGOK SZÁLLÍTÁSA
Összefoglalás Fizika 7. o.
Az elektromos mező feszültsége
Elektromos alapismeretek
A hatágú csillag (12 oldalú poligon) kerülete K1= (4/3)K0= 4,
Hangterjedés akadályozott terekben
Korszakváltás az adapterek alkalmazásában
Feladatok Mikro és nanotechnika pót ZH-ra na meg pótpótZH-ra 
Szélességi bejárás , 0.
Építőanyagok tulajdonságai-1. Kiskunlacháza 2010 Horák György
Gravitációs erő (tömegvonzás)
Matematika III. előadások MINB083, MILB083
Mérnöki Fizika II előadás
1.feladat. Egy nyugalomban lévő m=3 kg tömegű, r=20 cm sugarú gömböt a súlypontjában (középpontjában) I=0,1 kgm/s impulzus éri t=0,1 ms idő alatt. Az.
1. Feladat Két gyerek ül egy 4,5m hosszú súlytalan mérleghinta két végén. Határozzuk meg azt az alátámasztási pontot, mely a hinta egyensúlyát biztosítja,
AZ INAK ÉS SZALAGOK BIOMECHANIKÁJA
Mi az erő ? A fizikában az erő bármi olyan dolog, ami egy tömeggel rendelkező testet gyorsulásra késztet.
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém 2007.
Az erő.
Elektronikus Eszközök Tanszék
Energia, energiaváltozások
Összefoglalás Dinamika.
I. Törvények.
11. évfolyam Rezgések és hullámok
Paradoxon perdületre TÉTEL: Zárt rendszer perdülete állandó. A Fizikai Szemle júliusi számában jelent meg Radnai Gyula és Tichy Géza hasonló című.
(A tudomány szemszögéből)‏
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Az elektrosztatikus mozgatás Székely Vladimír Mizsei.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Integrált mikrorendszerek:
Nyomás, nyomóerő és nyomott felület kiszámítása
ELEKTROSZTATIKA 2. KÉSZÍTETTE: SZOMBATI EDIT
ELEKTROSZTATIKA 2. KÉSZÍTETTE: SZOMBATI EDIT
ELEKTROSZTATIKA 2. KÉSZÍTETTE: SZOMBATI EDIT. ELEKTROSZTATIKA – POTENCIÁL FOGALMA MUNKA A POTENCIÁL FOGALMÁNAK MEGÉRTÉSÉHEZ EL Ő SZÖR ISMÉTELJÜK.
Az erőtörvények Koncsor Klaudia 9.a.
ELEKTROSZTATIKA 2. KÉSZÍTETTE: SZOMBATI EDIT. ELEKTROSZTATIKA – POTENCIÁL FOGALMA MUNKA A potenciál fogalmának megértéséhez el ő ször ismételjük.
Erőtörvények Tóth Klaudia 9/b..
N-Body probléma Két test közötti gravitációs erő m_i, m_j : tömeg r_ij : az i testből a j testbe mutató vektor G : gravitációs állandó Eredő erő: a túlzott.
A mozgás egy E irányú egyenletesen gyorsuló mozgás és a B-re merőleges síkban lezajló ciklois mozgás szuperpoziciója. Ennek igazolására először a nagyobb.
A legismertebb erőfajták
Húros hangszerek működése
Energia, munka, teljesítmény
Elektronikus Eszközök Tanszéke 2003 INTEGRÁLT MIKRORENDSZEREK MEMS = Micro- Electro- Mechanical Systems.
Elektronikus Eszközök Tanszék 1999 INTEGRÁLT MIKRORENDSZEREK MEMS = Micro- Electro- Mechanical Systems.
A NEHÉZSÉGI ÉS A NEWTON-FÉLE GRAVITÁCIÓS ERŐTÖRVÉNY
A FONTOSABB MÓDSZEREK:
Különféle erőhatások és erőtörvények
Munka, energia teljesítmény.
Fizikai értelemben akkor történik munkavégzés, ha egy testre erő hat, és ennek következtében a test az erő irányába elmozdul. Pl.: egy testet függőleges.
Szerkezetek Dinamikája 3. hét: Dinamikai merevségi mátrix végeselemek módszere esetén. Másodrendű hatások rúdszerkezetek rezgésszámításánál.
A fizikában minden olyan változást, amely időben valamilyen ismétlődést mutat, rezgésnek nevezünk. Ha a csavarrugóra felfüggesztett testet, a rugó hossztengelyének.
Mechanikai rezgések és hullámok
Rezgések Műszaki fizika alapjai Dr. Giczi Ferenc
Munka, energia teljesítmény.
Newton II. törvényének alkalmazása F=m*a
Hogyan mozog a föld közelében, nem túl nagy magasságban elejtett test?
Komplex természettudomány 9.évfolyam
Az SI mértékrendszer.
11. évfolyam Rezgések és hullámok
NANOMECHANIKAI KÍSÉRLETEK
Harmonikus rezgőmozgás. FOGALMA A rugóra függesztett testet, ha egyensúlyi helyzetéből kimozdítjuk, akkor két szélső helyzet között periodikus mozgást.
Automatikai építőelemek 6.
4. Tétel Erőhatás, erő, tömeg.
Fizikai értelemben akkor történik munkavégzés, ha egy testre erő hat, és ennek következtében a test az erő irányába elmozdul. Pl.: egy testet függőleges.
Dinamika alapegyenlete
Automatikai építőelemek 6.
Az erő fajtái Aszerint, hogy mi fejti ki az erőhatást, beszélhetünk:
Előadás másolata:

A fésűs meghajtó Nézzük meg, hogy mi a legcélszerűbb kialakítása az elektrosztatikus mozgató szerkezetnek! Céljaink: nagy erőhatást szeretnénk, tehát dC/dx nagy legyen, hosszabb elmozdulásnál is állandó erőt szeretnénk, dC/dx tehát ne változzék, miközben a mozgó elektróda elmozdul. Nézzük meg, hogy mi a legcélszerűbb kialakítása az elektrosztatikus mozgató szerkezetnek! Céljaink: nagy erőhatást szeretnénk, tehát dC/dx nagy legyen, hosszabb elmozdulásnál is állandó erőt szeretnénk, dC/dx tehát ne változzék, miközben a mozgó elektróda elmozdul.

A fésűs meghajtó

A fésűs meghajtó - az erőhatás

A fésűs meghajtó - példa A 2. poli vastagsága w = 2  m. A fogak hosszúsága 40  m, szélessége 3  m, a légrés szélessége s = 3  m. A rugó-szalagok hosszúsága 150  m, szélességük 2  m. A fésűfogak száma 25, tehát N = 50. N/V 2, 1V hatása Se = 0,71 m/N m/V 2

A rugóállandó megállapításának másik útja lehet a rezonancia frekvenciából való visszaszámolás. A mért rezonancia frekvencia f 0 = 20 kHz volt. A mozgórész teljes tömegét a geometriai adatokból és a szilícium sűrűségéből számolhatjuk ki. Ez a számítás a kg ered- ményre vezetett. A frekvenciát az alábbi képlet adja: m/N