Halmazállapot változások

Slides:



Advertisements
Hasonló előadás
A halmazállapot-változások
Advertisements

Széchényi Ferenc Gimnázium
Mivel fűtünk majd, ha elfogy a gáz?
Hőpréselés alatt lezajló folyamatok •A kompozit alkotóelemei z irányban végleges helyükre kerülnek; Mi történik?
Folyadékok és gázok mechanikája
Hogyan alakulnak ki a hópelyhek?
A megújuló energiaforrások
Hőtechnikai alapok A hővándorlás iránya:
Időjárás, éghajlat.
Az időjárás.
Energia a középpontban
Összefoglalás 7. osztály
Hő- és Áramlástan I. - Kontinuumok mechanikája
Halmazállapot-változások
IV. fejezet Összefoglalás
Hővezetés Hőáramlás Hősugárzás
Elektromos alapismeretek
Halmazállapotok, Halmazállapot-változások
A hőterjedés alapesetei
Vízgőz, Gőzgép.
Összefoglalás 7. osztály
KOLLOID OLDATOK.
OLDATOK KOLLIGATÍV TULAJDONSÁGAI
Hőtan (termodinamika)
HŐÁTVITELI (KALORIKUS) MŰVELETEK Bevezető
Hurrikánok, Tájfunok, Tornádók
Levegőtisztaság-védelem 6. előadás
Termikus kölcsönhatás
HŐTERJEDÉS.
Halmazállapot-változások
Kémiai baleset egy fővárosi gimnáziumban, öten megsérültek
A test belső energiájának növekedése a hősugárzás elnyelésekor
A hőmérséklet mérése. A hőmérő
Mit tudunk már az anyagok elektromos tulajdonságairól
A forrás. A forráspont Var. Bod varu.
A test belső energiájának változása a hőcsere során
Hőtan (termodinamika)
Halmazállapot-változások
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Az oldatok.
Villamos tér jelenségei
„És mégis mozgás a hő” Készítette: Horváth Zsolt Krisztián 11.c.
Tanár: Kaszás Botos Zsófia
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
A folyadékok és a gázok nyomása
Állandóság és változékonyság a környezetünkben 2.
HŐTAN 1. KÉSZÍTETTE: SZOMBATI EDIT
HŐTAN 3. KÉSZÍTETTE: SZOMBATI EDIT
Hőelvezetés.
Entrópia Egy szobában kinyitunk egy üveg parfümöt. Mi a valószínűbb?
A negyedik halmazállapot: A Plazma halmazállapot
A plazma halmazállapot
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Levegőszennyeződés.  A levegőben természetes állapotban is sokféle gáz található:  négyötödnyi nitrogén  egyötödnyi oxigén.
Mechanikai hullámok.
HŐTAN 9. KÉSZÍTETTE: SZOMBATI EDIT
A forrás- és az olvadáspont meghatározása
HALMAZÁLLAPOTOK SZILÁRD:
Összefoglalás Hőjelenségek. 1. A folyadék melegebb, kisebb sűrűségű része fel- emelkedik, helyére alacsonyabb hőmérsékletű anyag kerül. Ez a jelenség.
Általános kémia előadás Gyógyszertári asszisztens képzés
Kölcsönhatás a molekulák között. 1.Milyen fajta molekulákat ismerünk? 2.Milyen fajta elemekből képződnek molekulák? 3.Mivel jelöljük a molekulákat? 4.Mit.
Melyik két anyag tulajdonságait hasonlítottuk össze a múlt órán? Soroljátok fel a legfontosabb fizikai tulajdonságaikat! Mi történik a két anyaggal melegítés.
Halmazállapot-változások
 ÁLTALÁNOS INFORMÁCIÓK A SUGÁRZÓ FŰTÉSRŐL:  A sugárzó fűtés működési elve legjobban a Nap sugárzásához hasonlítható. A Napból érkező sugarak először.
1 FIZIKA Hőtan Balthazár Zsolt Apor Vilmos Katolikus Főiskola.
GÁZOK, FOLYADÉKOK, SZILÁRD ANYAGOK
A hőmérséklet mérése.
Fenntarthatósági témahét
A folyadékok és a gázok nyomása
OLDATOK.
Előadás másolata:

Halmazállapot változások

Termotasak gélpárna

Hőterjedés Hővezetés: 3 mód Egy épületben energiára van szükség a fűtésre a hideg időszakban azért, hogy a különböző részek hőveszteségét pótoljuk és kellemes belső hőmérsékletet biztosítsunk. A hőáramláshoz belső és külső hőmérsékleti különbségre van szükség. A hőáramlás függ a fal típusától és hőszigetelési minőségétől. Konvekció: A melegebb és a hidegebb anyag keveredik, anyagáramlás van. Hőáramlás Kondukció: A hő helyi részecske ütközésekkel adódik át. Az anyag nem áramlik. Hővezetés Hősugárzás: Elektromágneses hullámok. (IR)

- Hővezetés: Szilárd anyagon vagy gázon keresztül: minél szigetelőbb az anyag, annál kisebb a hővezetés. - Hőáramlás: a hő "utazik" a légmozgásnak köszönhetően, a hőmérséklet és a testsűrűség foka miatt. A forró levegő felfelé halad és a meleg eloszlik. Minél kisebb a légmozgás, annál kisebb a hőáramlás. - Hősugárzás: Minden anyag hőt nyel el vagy sugároz ki, hőmérsékletétől és sugárzóképességétől függően. A terjedési közegtől függően a hő funkciója más (vákuum vagy levegő). Ha a sugárzás elnyelődik vagy visszaverődik, kevesebb a hővezetés.

Hővezetés

Newton-féle lehűlési törvény Exponenciálisan csökkenő hőmérséklet.

Mennyire melegszik fel az áramkör? Hűtőbordák Hűtőventillátor Hűtővíz Szabályozó automatika

A fizikában ionizált gázt jelent, illetve a negyedik  halmazállapotot a szilárd, folyadék és gáz mellett. Az ionizált itt azt jelenti, hogy az anyagot alkotó atomokról egy vagy több elektron leszakad és így a plazma ionok és szabad elektronok keveréke lesz. Az így keletkező elektromos töltés miatt a plazma elektromosan vezetővé válik és az elektromágneses mezőkkel kölcsönhat. A halmazállapot e negyedik formáját először Sir William Crookes írta le 1879-ben, az elnevezés pedig Irving Langmuir nevéhez fűződik 1928-ban(a vérplazmára emlékeztette). A látható Világegyetem anyagának 99%-a ebben a halmazállapotban van. A plazma magas hőmérsékleten alakul ki, létrehozásához legalább tízezer kelvint kell elérni, hogy az atommag pozitív töltését a hő leküzdje és az elektronok elszakadnak az atomból és ekkor megszűnik az elektronfelhő.

Polikristály - egykristály Kristálytextúra meghatározója: gócképződés és növekedés aránya Homogén magképződés lassú, a növekedés gyorsabb  kevés nagy szemcse, egykristály Heterogén magképződés: idegen anyag: magkezdemény,  csökkentő  finomszemcsés Túlhűtés: szemcse hidegebb olvadékba nő, előreszalad  hőfelszabadulás lelassul  dendrites szerkezet Dendrit szerkezetek

Egy nagyon érdekes és veszélyes jelenséggel találhatjuk szembe magunkat a konyhánkban. A túlhevítés jelenségéről van szó, amely akkor jön létre, ha sokáig melegítünk folyadékot a mikrohullámúsütőnkben. Túlhevített állapotba akkor kerül a folyadék, ha olyan edényben melegítjük amelynek felületén kevés repedés található, így azokon keresztül nem indulhat meg a buborékképződés, amely elvezetné a felgyülemlet hőt. Így a folyadék saját forráspontjánál tovább melegszik, anélkül, hogy veszítene a hőmérsékletéből. A túlhevült folyadék így akkor fog megszabadulni a hőtől, amikor mondjuk megmozdítjuk a csészét vagy egy kanalat teszünk a folyadékba, ekkor robbanásszerű buborékképződés játszódik le. Az alábbi videó jól szemlélteti a következményeket. Egy másik hasonlóan érdekes jelenség, ennek inverze, a túlhűlés. Ez akkor következik be, ha egy álló víztömeg (de más folyadékokra is igaz) fagyáspontjánál alacsonyabb hőmérsékletre hűl. Ekkor a legkisebb mozgásra (egy kisebb szél, hajó mozgása, stb.) is hirtelen megfagy, megindul a jégképződés. Ez nagyon ritka jelenség, de már megfigyelték. Az alábbi videó megmutatja hogyan készíthetünk túlhűlt vizet és hogyan néz ki, mikor "kikristályosodik". Youtube: Instant Ice

Egy történetet köröznek elektronikus postán, amely szerint egy 26 éves férfi mikrohullámú sütõben melegített egy csésze vizet, és amikor kivette, az egész az "arcába robbant".  A férfi súlyos égési sérüléseket szenvedett. Igaz lehet-e a történet, és hogyan fordulhatott elõ? A víz mindig párolog a száraz levegõbe, de általában csak a felületérõl párolog. Amikor a vízmolekulák gyorsabban hagyják el a felületet, mint ahogy visszatérnek, a folyékony víz mennyisége fokozatosan csökken. Ez a közönséges párolgás. Ha azonban a vizet forráspontjára melegítjük, nemcsak a felületérõl párolog, hanem a belsejébõl is. Ha a forró vízben gõzbuborék keletkezik, a vízmolekulák belepárologhatnak ebbe a gõzbuborékba, és növekedésre késztetik. Magas hõmérsékletre azért van szükség, mert a buborék belsejében levõ nyomás függ a hõmérséklettõl. Alacsony hõmérsékleten a buboréknyomás túl kicsi, és a külsõ légnyomás összeroppantja a buborékot. Ezért forr a víz csak a forráspontja fölött. Mivel a nyomás is szerephez jut, a forráspont függ a légnyomástól. Nagy magasságban a forrás alacsonyabb hõmérsékleten következik be, mint a tengerszint magasságában. De figyeljen oda az elõzõ bekezdésben a "Ha a forró vízben gõzbuborék keletkezik" kifejezésre. Ezt könnyebb mondani, mint csinálni. Ahhoz, hogy gõzbuborék képzõdjék, amelybe a vízmolekulák belepárologhatnak, igen sok vízmolekulának kell magától, egyszerre elszakadnia egymástól. Ez ritka esemény. Elõfordulhat, hogy egy csésze vízben több fokkal a forráspont fölött is percekig kell várni erre a ritka eseményre. Rendszerint a csésze egyik hibás helyén vagy a víz szennyezõdésén történik meg – ott, ahol valami segít az elsõ néhány vízmolekulának a buborék kialakításában. Amikor a tûzhelyen forraljuk a vizet, az edény forró pontjai vagy az edény alján levõ hibák rendszerint elõsegítik a buborékképzõdést, és a forrás megindul a forrpont fölött. De ha egy sima csészében melegítjük a vizet a mikrohullámú sütõben, jóformán semmi sem segíti a buborékképzõdést. A víz a forráspontja fölé hevül anélkül, hogy megindulna a forrás. A víz túlhevül – a hõmérséklete a forráspontja fölé emelkedik. Amikor meglökjük a csészét, vagy szórunk bele valamit, például cukrot vagy sót, megindítjuk a buborékképzõdést, és a víz heves forrásba kezd. A mikrohullámú sütõvel kapcsolatos, súlyos túlhevülési balesetek szerencsére ritkák – most hallottam ilyenrõl elõször. Csökkenthetjük a balesetveszélyt, ha szándékosan indítjuk meg a buborékolást, mielõtt kivesszük a csészét a mikróból. Ha egy kanalat vagy valamilyen ételt teszünk a vízbe, megindul a forrás. Gyakran látom, amikor a teámat melegítem, hogy egy kis cukor is jót tesz.