Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék Dr. Ősz János Fenntartható fejlődés és energetika.

Slides:



Advertisements
Hasonló előadás
Készítette: Szabó Nikolett 11.a
Advertisements

A globális felmelegedés és az üvegházhatás
Mentsük meg a földet ! Üvegházhatás erősödése, esőerdőink irtása, ránk való hatása és lehetőségeink a földünk megmentésére.
Szélkerék-erdők a világban és hazánkban
A fenntartható fejlődés indikátorai Magyarországon
Energetikai gazdaságtan Energiatermelés (Termelési folyamat) gazdasági értékelése.
Az éghajlatváltozás problémája egy fizikus szemszögéből Geresdi István egyetemi tanár Pécsi Tudományegyetem Természettudományi Kar.
Kémia 6. osztály Mgr. Gyurász Szilvia
A fenntartható fejlődés és a Nemzeti Fenntartható Fejlődési Stratégia
Fenntartható energiagazdálkodással az éghajlatváltozással szemben: retorika vagy realitás? Budapesti Műszaki és Gazdaságtudományi Egyetem Környezetgazdaságtan.
Az Észak-Alföldi régió energiastratégiája
"vállalkozások klímatudatossága" Melyek vagy melyek lennének a legjobb, leghatékonyabb állami eszközök a vállalkozások klímatudatosságának erősítésére?
Szerkesztette: Babay-Bognár Krisztina
Solar rendszerek környezeti hatásai Ifj. Filó György.
NEM MEGÚJULÓ ENERGIAFORRÁSOK
ÚJ KIHÍVÁSOK, ALTERNATÍVÁK A FENNTARTHATÓSÁG ÚTJÁN „LEGYEN SZÍVÜGYÜNK A FÖLD!” Nukleáris energiatermelés a fenntarthatóság jegyében Bátor Gergő.
Globális problémák Kialakulásuk okai:
A Magyar Természetvédők Szövetsége az Éghajlatváltozási Stratégiáról Farkas István, ügyvezető elnök Magyar Természetvédők Szövetsége Föld Barátai Európa.
1872 : 1. nemzeti park megalakítása Yellowstone
Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék 1 Környezetvédelem Üvegházhatás.
A LÉGKÖR GLOBÁLIS PROBLÉMÁI
A fenntartható fejlődés alapelemei, globális célkitűzései
A globális klímaváltozás
Klímaváltozás – fenntarthatóság - energiatermelés
Légszennyezőanyag kibocsátás
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék Dr. Ősz János Energetika I-II. energetikai BSc.
Energetika II. energetikai BSc szak (energetikai mérnök szak)
Légszennyező anyagok hatása a környezetre
A globális felmelegedést kiváltó okok Czirok Lili
A LÉGKÖR GLOBÁLIS PROBLÉMÁI
A MEGSEBZETT FÖLD.
A víz globális környezeti problémái
A légkör - A jelenlegi légkör kialakulása - A légkör összetétele
2. AZ ENERGETIKA ALAPJAI.
Az üvegházhatás és a savas esők
Antropogén eredetű éghajlatváltozás A globális átlaghőmérséklet eltérése az átlagtólÉvi középhőmérséklet Pécsett 1901 és 2001 között.
Energetika I-II. energetikai mérnök szak energetikai BSc szak
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék Dr. Ősz János Energetika I-II. energetikai BSc.
Energiatervezés Energiapolitikai szempontok Forgatókönyv elemzés.
MEGÚJULÓ ENERGIAFORRÁSOK BIOMASSZA
Jut is, marad is? Készítette: Vígh Hedvig
Globális problémák.
Mérnökökológia Musa Ildikó BME VKKT.
Megújuló energiaforrások – Lehetőségek és problémák
Globális felmelegedés és a különböző ciklusok
Civin Vilmos MVM Zrt. „Klímacsúcs” Budapest, február 27. Klímaváltozás és egy állami tulajdonú villamos társaság.
A mezőgazdaság és az élelmiszeripar kapcsolata a fenntartható fejlődés érdekében Kaposvár 2009 április 28. Sándor István Földművelésügyi és Vidékfejlesztési.
Ökológiai fenntarthatóság – veszélyek és kiutak
Biomassza-óvatosság. Érvek a biomassza mellett ÜHG kibocsátás mérséklése Energiafüggőség oldása a fosszilis energiahordozóktól, azok importjától A mezőgazdasági.
1. BEVEZETÉS. EMBER,ENERGIA, KÖRNYEZET
A levegőtisztaság-védelem fejlődése , Franciaország világháborúk II. világháború utáni újjáépítés  Londoni szmog (1952) passzív eljárások (end.
Levegőtisztaság-védelem 2.
Globalizáció és környezeti problémák
A fenntarthatóság szempontrendszere és a jövő iskolája Varga Attila, Országos Neveléstudományi Konferencia Budapest,2011. november 3.
Levegőszennyeződés.  A levegőben természetes állapotban is sokféle gáz található:  négyötödnyi nitrogén  egyötödnyi oxigén.
Levegőtisztaság védelem
Város energetikai ellátásának elemzése
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA ENERGETIKA TUDOMÁNYA FAZEKAS ANDRÁS.
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA ENERGIAELLÁTÁS FAZEKAS ANDRÁS ISTVÁN.
5. Globális problémák. Erőforrás szűkösség [Dixon] Az erőforrás szűkösség létezésünk mindenütt jelenlévő jellemzője, aminek három formája: –kínálat indukálta.
Energia és környezet Szennyezőanyagok légköri terjedése Bevezető Dr. Gács Iván BME Energetikai Gépek és Rendszerek Tanszék
FAZEKAS ANDRÁS ISTVÁN PhD c. egyetemi docens
Energetikai gazdaságtan
Ébresztő! A fele elfogyott Hetesi Zsolt Vezető kutató
A FÖLDGÁZ ÉS A KŐOLAJ.
Készítette: Pacsmag Regina Környezettan BSc
Készítette: Branikovits Kitti
A 2007-es, 2013-as IPCC jelentés üzenete, új elemei
Bioenergia, megújuló nyersanyagok, zöldkémia
Energiaforrásaink.
Előadás másolata:

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék Dr. Ősz János Fenntartható fejlődés és energetika

Fenntartható fejlődés Az ökonómia, az ökológia és a társadalmi teherviselés összhangjának koncepciója. „A fenntartható fejlődés olyan fejlődés, amely kielégíti a jelen generációk szükségleteit anélkül, hogy veszélyeztetné a jövő generációit abban, hogy ők is kielégíthessék szükségleteiket.” [Brundtland „Közös jövőnk” jelentés, ] : –Ne szennyezzük a környezetet olyan anyagokkal, amelyek nagyobb régiók és a jövő generációk életlehetőségeit veszélyeztetik. –A lehető legnagyobb mértékben takarékoskodjunk azokkal az ásványi anyagokkal, amelyek a jövő generációk nélkülözhetetlen alapanyagainak is tekinthetők. –„Ne tegyünk semmi olyant, aminek hosszú távú hatásait nem ismerjük.” → környezeti hatástanulmány, engedély.

Energetika Az energetika kiemelt jelentőséggel bír a fenntartható fejlődésben: – a fejlődés feltétele, motorja és jellemzője, – ökológiai hatásai: kibocsátások, hatás a globális felmelegedésre, hatás az ózonlyuk növekedésére, hatás a biológiai sokféleségre.

Problémák Jelenlegi állapot: – természeti kincsek végessége (lásd készletek), – gazdasági-társadalmi különbségek, – energetikai ellátásbiztonság, – kibocsátások és azok hatásai. A technikai fejlődés kétarcú, pozitív és negatív hatások, a fejlődés egyik mozgatóereje, csak régebben időben és térben korlátozott hatások, míg ma a hatások és a veszélyek globálisak.

1. Gazdasági-társadalmi különbségek növekedés jelenleg kb. 77 millió fő/év

1. Gazdasági-társadalmi különbségek Népesség, gazdaság növekedése egyenlőtlen, óriási különbségek. Migráció erősödése. Nemzetközi instabilitás (konfliktusok, terrorizmus). Környezetromlás, globális ökológiai problémák. Az emberiség fokozatosan felismeri a veszélyt: - mekkora a föld eltartó képessége, - az egyenlőtlenségek, a migráció, a környezetromlás hogyan csökkenthető, - a társadalmi, gazdasági és ökológiai fenntarthatóság szoros kölcsönhatásban van egymással.

1.1. Energetikai egyenlőtlenségek A régiók primer tüzelőhő-felhasználása (E=10 18 )

1.1. Energetikai egyenlőtlenségek A régiók egy főre eső energiafelhasználásának aránya

2. Energetikai ellátásbiztonság Ellátásbiztonság: az ország vagy régió indokolt energiaigényét valamennyi energiafajta esetében bármikor ki tudja elégíteni. Elemei: – megfelelő energiahordozó struktúra, – forrásdiverzifikáció, – stratégiai készletek, – ésszerű energiatakarékosság.

2. Energetikai ellátásbiztonság Nagy egyenlőtlenségek a régiók között: ott van kevés forrás, ahol nagy a felhasználás, és ott van sok forrás, ahol kevés a felhasználás. Ezért a nagy fogyasztók energiaellátásának nagy része importból → importfüggőség. Ezáltal az ellátásbiztonság sérül. Nemzetközi feltételektől való erős függés → konfliktusok lehetősége.

2.1. Energiahordozó készletek Évi felhasználás/ismert készlet: –Szén: kb. 200 év. –Kőolaj: kb. 50 év (olajpalával kb. 100 év). –Földgáz: kb év (szénelgázosítás?). Olyan új fogyasztók (Kína, India) léptek be, akik felhasználása évről-évre jelentősen nő.

3. Az energetika környezeti kibocsátásai Kibocsátások és azok hatásai: – üvegházhatás, – ózon vékonyodás, – biológiai sokféleség csökkenése, – radioaktív sugárzás egészségügyi hatásai. A teljes vertikumot kell tekinteni!

Jelentősebb környezeti kibocsátások

3.1. Üvegházhatású gázok globális szennyezés szén-dioxid (CO 2 ), metán (CH 4 ), dinitrogén-oxid (N 2 O), fluorozott szénhidrogének (HFC-k), perfluor karbonátok (PFC-k), kén-hexafluoridok (SF 6 ).

Szén-dioxid Globális széndioxid-kibocsátás (folytonos) és koncentráció (szaggatott) A föld átlagos hőmérsékletének változása (vastag: porkoncentráció figyelembe vétele nélkül)

Globális klímaváltozás a 21. században (előrejelzések)

Szén-dioxid Fosszilis tüzelőanyagok kibocsátásai: – szén: 130 [g CO 2 /MJ tüzelőhő, antracit], – olaj: 70-75, – földgáz: 58. Az energetika összes CO 2 -kibocsátása jelenleg kb. 27 milliárd t/év. A gépkocsi-forgalom jelentős szerepe: azokban a városokban, ahol jelentős a lakosság, ott koncentrálódik a kibocsátás.

A villamosenergia-termelő eljárások CO 2 -kibocsátása [kg/kWh]

Kén- és nitrogén-oxidok lokális szennyezés Károsítják az emberi egészséget, és hozzájárulnak a talaj, az erdők és a felszíni vizek savasodásához → regionális környezetszennyezés. Természeti víz savas (pH≈5,5) az oldott CO 2 miatt → savasodás pH<5 (SO x és NO x miatt). SO x -k kibocsátása a tüzelőanyagtól függ (2 kg SO 2 füstgáz/1 kg S tüzelőanyag): – C (1-3 %): 2-5 g/MJ, – kőolaj (gudron, 2-4 %): 1-2 g/MJ. Megoldás: fütgáz-kéntelenítés.

Kén- és nitrogén-oxidok NO X -k: A tüzelés során, a levegő nitrogénjéből 1100 o C hőmérséklet felett keletkezik. Előírások a kibocsátásokra: <30 mg/Nm 3. Megoldások: –NO x -szegény égők, vízbefecskendezés (földgáz- tüzelésű gázturbinák), – katalizátoros motorok, – fluid-tüzelésű kazánok (t<1000 o C).

Radioaktív kibocsátások Folyékony és légnemű radioaktív kibocsátások. Radioaktív hulladékok: – kisaktivitású, – közepes aktivitású, – nagyaktivitású. Megoldás: kibocsátások szigorú határértékei, hulladékfeldolgozás, elhelyezés → fűtőelemek transzmutációja.