Hagyományos reakciókinetikai mérés: reakció indítása (összekeverés, felfűtés, ...) mintavétel, reakció megállítása analízis
Hagyományos reakciókinetikai mérés Az időbeli felbontást korlátozó tényező Az időbeli felbontás javítását célzó taktika Elérhető időbeli felbontás Reakció megállítása, analízis Folyamatos analízis, pl. spektrofotometria ~ perc helyett akár ns Reakció indítása Gyors keverés – megállított áramlás ~ perc helyett ms 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs
A megállított áramlás módszere „Stopped flow” technika Az idő- felbontást a keverés és a turbu- lencia lecsillapo- dása szabja meg, holtidő ~1 ms
villanófény-fotolízis A keverés kiküszöbölése – reagáló részecske gyors létrehozása a mérőcellában: villanófény-fotolízis Hátrány: csak fotokémiai módszerrel előállítható részecske vizsgálható. Az időfelbontás korlátja a gerjesztő lézer impulzusának hossza, tehát akár fs (10-15 s) Analízis: emisszió vagy abszorbancia mérése, vezetés mérése 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs
Villanófény-fotolízis I. minta EMISSZIÓ mérése frekvencia- kettőző kristály Nd-YAG impulzuslézer detektor oszcilloszkóp indítás erősítő
Villanófény-fotolízis II. fényforrás ABSZORBANCIA mérése minta frekvenci- kettőző kristály Nd-YAG impulzuslézer monokromátor detektor oszcilloszkóp indítás erősítő
Kémiai Nobel díj 1967. Manfred Eigen 1927 - Ronald G.W. Norrish 1897 - 1978 George Porter 1920 – 2002
Relaxációs módszerek Egyensúlyban levő rendszert kibillentünk egyensúlyából, mérjük az új állapotnak megfelelő egyensúly beállásának sebességét. Például: hőmérséklet-ugrás, elektromos térerő-ugrás
A hőmérséklet-ugrás módszerének reneszánsza Fehérje térszerkezet kialakulási sebességének mérése: A triptofán fluoreszcencia élettartamát (ns) a környezete szabja meg, ebből következtethetünk a fehérje konformációjára. A mérés elve: egyetlen hőmérséklet-ugrás után μs–os ismétlődéssel mérjük a ns-os fluoreszcencia-élettartamot, ezzel feltérképezzük a fehérje térszerkezetének kialakulását.
A reakciókinetikai mérési módszerek jellemző időfelbontása 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs „lombik-reakció” megállított áramlás villanófény-fotolízis
Időkorrelált egyfoton-számlálás A fluoreszcencia intenzitásának folyamatos mérése helyett a gerjesztő és a detektált impulzus közötti időt mérjük, nagyon sok mérés statisztikája adja a fluoreszcencia lecsengési görbét.
A reakciókinetikai mérési módszerek jellemző időfelbontása 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs „lombik-reakció” megállított áramlás villanófény-fotolízis időkorrelált fotonszámlálás
Pumpa-próba kísérlet időmérés helyett távolságmérés: 30 cm = 1 ns 10000 ps 10-20 ps saroktükör próbasugár DCM festéklézer minta argonlézer fény- dikroikus osztó tükör R6G festéklézer pumpasugár detektor
A reakciókinetikai mérési módszerek jellemző időfelbontása 100 10-3 10-6 10-9 10-12 10-15 s ms μs ns ps fs „lombik-reakció” megállított áramlás villanófény-fotolízis időkorrelált fotonszámlálás pumpa - próba
A fejlődő hőt érzékelő spektroszkópiai módszerek „Termikus lencse” módszer Fotoakusztikus spektroszkópia
A fejlődő hőt érzékelő spektroszkópiai módszerek „Termikus lencse” módszer Fotoakusztikus spektroszkópia
A termikus lencse módszer sémája
A fejlődő hőt érzékelő spektroszkópiai módszerek „Termikus lencse” módszer Fotoakusztikus spektroszkópia
A termikus lencse módszer sémája
Benzol szingulett-triplett átmenetének spektruma