Korszakváltás a processzorok fejlődésében Sima Dezső 2007. Szeptember.

Slides:



Advertisements
Hasonló előadás
A processzorok rövid történelme, áttekintése
Advertisements

Alaplap.
64 bites architektúra, csapdák és átjárók Tóth Sándor Terméktámogatási tanácsadó.
A számítógép felépítése
A szó eredete:INTegrated ELectronics Készítette: Rázga Péter.
A számítógép felépítése
A mikroprocesszor 1. rész.
Számítógép architektúra
 Többszálúság  Gyártási költségek  A modellnevek megváltoztatása  Processzor magok  Athlon és Phenom összehasonlítása.
A számítógép felépítése
A hardver és a személyi számítógép konfigurációja
Alaplapra integrált csatlakozók
Alapfogalmak Hardver:  A számításokat végző fizikai-technikai rendszer (kézzel fogható, fizikai termékek) Szoftver:  Programok, programrendszerek (szellemi.
Mikroprocesszorok (CPU)
Alapfogalmak Adat: fogalmak, tények, jelenségek olyan formalizált ábrázolása, amely emberi vagy gépi értelmezésre, feldolgozásra, közlésre alkalmas. Információ:
A 2000-es év utáni processzorok jellemzői
Digitális rendszerek I. c
Paradigmaváltások a processzorfejlesztésben Sima Dezső augusztus 25.
3. Szálszinten párhuzamos feldolgozás (TLP)
Korszakváltás a processzorok fejlődésében Sima Dezső 2013 őszi félév (verzió 3.4)
Sima Dezső Többmagos/sokmagos processzorok Október Version 3.0.
Korszakváltás a processzorok fejlődésében Sima Dezső 2011 őszi félév (módosított, verzió 3)
Korszakváltás a processzorok fejlődésében Sima Dezső 2011 őszi félév.
Korszakváltás a processzorok fejlődésében Sima Dezső 2007 őszi félév.
Korszakváltás a processzorok fejlődésében Sima Dezső 2009 őszi félév.
Korszakváltás a processzorok fejlődésében
CISC - RISC processzor jellemzők
A memória.
Számítógép memória jellemzői
Többmagos processzorok
A memóriák típusai, jellemzői
IPARÁGAK VÁLTOZÁSA : HELYI GAZDASÁGFEJLESZTÉS EVOLUCIONISTA SZEMSZÖGBŐL Bajmócy Zoltán egyetemi adjunktus Szegedi Tudományegyetem Gazdaságtudományi Kar.
Mikroprocesszorok. X86 – amit mi is használunk Eredetileg 16 bites CISC Először 8, 16, majd 32 bitesre bővítve IA32 néven Kívül CISC, belül RISC (Pentium.
Egy harmadik generációs gép (az IBM 360) felépítése
MIÉRTEK A SZÁMÍTÁSTECHNIKÁBAN
A számítógép felépítése (funkcionális)
Determinisztikus vonások a mikroprocesszorok fejlődésében Sima Dezső május 27.
Operációs Rendszerek II.
Paradigmaváltások a processzorfejlesztésben Sima Dezső augusztus 25.
Az ILP feldolgozás fejlődése
Hardvereszközök Hardvereszközök I.rész. Hardvereszközök CPU Memóri a Input Háttértárolók Outpu t A számítógép felépítési elve Neumann elvek: 1.Soros utasításvégrehajtás.
Processzorok.
A Neumann-elvű gépek A Neumann elvek:
A többmagos processzorok világa Páter-Részeg Attila (PAASABI.ELTE) Beadandó I.
Ismerkedjünk tovább a számítógéppel
Processzorok és típusai
A projekt az Európai Unió társfinanszírozásával, az Európa terv keretében valósul meg. Számítógép- architektúrák dr. Kovács György DE AVK GAIT.
1 Számítógépek felépítése 13. előadás Dr. Istenes Zoltán ELTE-TTK.
IT ALAPFOGALMAK HARDVER.
Mikroprocesszorok (Microprocessors, CPU-s)
Piramis klaszter rendszer
A projekt az Európai Unió társfinanszírozásával, az Európa terv keretében valósul meg. Számítógép- architektúrák dr. Kovács György DE AVK GAIT.
ifin811/ea1 C Programozás: Hardver alapok áttekintése
CISC-RISC processzor jellemzők Előadó: Thész Péter Programtervező informatikus hallgató Budapest,
A processzorok (CPU).
Számítógépek felépítése 4. előadás ALU megvalósítása, vezérlő egység
1 Számítógépek felépítése 5. előadás a CPU gyorsítása, pipeline, cache Dr. Istenes Zoltán ELTE-TTK.
Korszakváltás a processzorok fejlődésében Sima Dezső 2014 őszi félév (verzió 3.5)
Korszakváltás a processzorok fejlődésében Sima Dezső 2014 őszi félév (verzió 3.5)
1 A számítógépek felépítése jellemzői, működése. 2 A számítógép feladata Az adatok Bevitele Tárolása Feldolgozása Kivitele (eredmény megjelenítése)
RAM (Random Access Memory)
Korszakváltás a processzorok fejlődésében
Korszakváltás a processzorok fejlődésében
Korszakváltás a processzorok fejlődésében
Korszakváltás a processzorok fejlődésében
Az ILP feldolgozás fejlődése
Korszakváltás a processzorok fejlődésében
A számítógép működésének alapjai
Fejlett pipeline megoldások IMSC 2019
Pipeline példák (IMSC, 2019).
Előadás másolata:

Korszakváltás a processzorok fejlődésében Sima Dezső Szeptember

Felépítés 1. Processzorok teljesítménye 2. A processzorok hatékonysága 3. A processzor hatékonyság stagnálása által kiváltott fejlődési főirányok áttekintése 4. Az órafrekvencia erőteljes növelése 5. A Hatékonysági korlát 6. A disszipációs korlát 7. Párhuzamos buszok frekvenciakorlátja 8. EPIC architektúrák/processzorok 9. Paradigmaváltás

Abszolút teljesítmény Relatív teljesítmény Eredményesen végrehajtott utasítások száma/sec Eredményesen végrehajtott műveletek száma/sec (SIMD) Egy benchmark programcsomag valamely referenciarendszeren és a vizsgált rendszeren mért futási időinek összevetése az alábbi értelmezéssel: Pl: SPECint92, SPECint_base Bevezetés (1) 1. Processzorok teljesítménye f c : Órafrekvencia IPC: Utasítások száma/ciklus OPI: Műveletek száma/utasítás

Általános célú alkalmazásokban: 1.1. Bevezetés (2) ahol: IPC: kibocsájtott utasítások száma ciklusonként η: eredményesen végrehajtott/kibocsájtott utasítások száma (spekulatív végrehajtás hatékonysága)

1.1. Bevezetés (3) Teljesítmény/hatékonyság vizsgálatokban: Elvi értelmezés: P a Gyakorlati mérés: P r ?

1.1. Bevezetés (4) Ha teljesülne: Ez esetben:

De mivel: 1.1. Bevezetés (5) 1.1. ábra: Programcsomag egyes programjainak futásidő arányai Forrás:

Két rendszer teljesítményének összehasonlításakor: 1.1. Bevezetés (6) A fenti közelítés trendvizsgálatokban megengedhető.

Két rendszer hatékonyságának összehasonlításakor: 1.1. Bevezetés (7)

1.2. A processzor teljesítmények növekedése (1) 1.2. ábra: Az x86 alapú Intel processzorok fixpontos teljesítményének növekedése

1.2. A processzor teljesítmények növekedése (2) 1.3. ábra: A fixpontos teljesítmények növekedése (általában - 1) Forrás: X86-64 Technology White Paper, AMD Inc., Sunnyvale, CA, 2000

1.2. A processzor teljesítmények növekedése (3) ábra: A fixpontos teljesítmények növekedése (általában - 2) Forrás: F. Labonte, www-vlsi.stanford.edu/group/chart/specInf2000.pdf

2.1. Bevezetés ? 2. A processzorok hatékonysága

2.1. ábra: Intel processzorok hatékonysága 2.2. A processzorok hatékonyságának növekedése (1)

2.2. ábra: Processzorok teljesítményének/hatékonyságának növekedése (általában) Forrás:J. Birnbaum, „Architecture at HP: Two decades of Innovation”, Microprocessor Forum, October 14, A processzorok hatékonyságának növekedése (2)

2.3. A hatékonyság növelés hozzájárulása a teljesítmények növeléséhez (2. generációig) ? A második generációig az órafrekvencia és a hatékonyság növelése egyenlő arányban járultak hozzá a teljesítmény növeléséhez.

2.4. A hatékonyság növelés forrásai Szóhossz növelése Időbeli párhuzamosság bevezetése, növelése Kibocsátási párhuzamosság bevezetése, növelése 8/16  32 bit (286  386DX) 1. és 2. generációs futószalag processzorok (386DX, 486DX) 1. és 2. generációs szuperskalárok (Pentium, Pentium Pro)

2.5. A hatékonyság növelésének korlátja (1) Feldolgozási szélesség 4 RISC utasítás/ciklus ~3 CISC utasítás/ciklus 2.3. ábra: A feldolgozás szélessége és az általános célú alkalmazásokban rejlő párhuzamosság mértéke a 2. generációs (széles) szuperskalárokban 2. generációs szuperskalárok (széles szuperskalárok) Forrás: Wall: Limits of ILP, WRL TN-15, Dec. 1990

2.5. A hatékonyság növelésének korlátja (2) 2.4. ábra: Processzorok hatékonyságának növekedése (általában)

Általános célú alkalmazásokban a 2. generációs (széles) szuperskalárokkal kezdődően a hatékonyság növelésének extenzív forrásai kimerültek Általános célú alkalmazásokban: 2.5. A hatékonyság növelésének korlátja (3) 2. generációs szuperskalárok szélessége már megközelíti rendelkezésre álló ILP mértékét

EPIC architektúrák kifejlesztése Az órafrekvencia erőteljes növelése A fejlődés fővonala (4. – 7. pontok) 3. A processzor hatékonyság stagnálása által kiváltott fejlődési főirányok áttekintése (8. pont)

A gyártási technológia vonalvastagságának csökkentése A futószalag fokozatok logikai hosszának csökkentése 4.1. Az órafrekvencia növelésének forrásai (1) Az órafrekvencia növelése 4. Az órafrekvencia erőteljes növelése

4.1. ábra: Az Intel gyártási technológiák fejlődése Forrás: D. Bhandarkar: „The Dawn of a New Era”, 11. EMEA, May, Az órafrekvencia növelésének forrásai (2)

4.2. ábra: Futószalag fokozatok logikai hossza processzorokban (FO4) 4.1. Az órafrekvencia növelésének forrásai (3) Forrás: F. Labonte www-vlsi.stanford.edu/group/chart/CycleFO4.pdf

4.3. ábra: Az x86 alapú Intel processzorok órafrekvenciájának növekedése 4.2. Az órafrekvenciák növekedési üteme (1)

4.2. Az órafrekvenciák növekedési üteme (2) 4.4. ábra: Az órafrekvenciák növekedési üteme (általában)

Fejlődési korlátok megjelenése RISC processzorok kiszorulása 4.3. Az órafrekvencia erőteljes növelésének konzekvenciái Áttekintés (4.3.2) (4.3.3)

RISC processzorok kiszorulása 4.5. ábra: RISC processzorok kiszorulása

Fejlődési korlátok megjelenése Párhuzamos buszok frekvenciakorlátja Disszipációs korlát Hatékonysági korlát (5. pont) (6. pont) (7. pont)

A processzor és a memória közötti sebességolló 5.1. Áttekintés 5. A Hatékonysági korlát Alapvető ok: (növekvő órafrekvenciákon tágul)

Memória átviteli rátája DRAM késleltetési ideje A processzor busz átviteli rátája L2 cache tárak elérési ideje 5.1. Áttekintés (2) A sebességolló konkrét megnyilvánulásai:

5.2. A processzor és a memória közötti sebességolló (1) 5.1. ábra: DRAM típusok késleltetési ideje (óraciklusokban)

5.2. ábra: Memóriák relatív átviteli rátája (D: kétcsatornás) 5.2. A processzor és a memória közötti sebességolló (2)

f c max at intro. (GHz) L2 size (Kbyte) L2 latency (clock cycles) Willamette Northwood Prescott ábra: L2 cache tárak elérési ideje 5.2. A processzor és a memória közötti sebességolló (3)

5.4. ábra: A processzor busz relatív átviteli rátája 5.2. A processzor és a memória közötti sebességolló (4)

5.3. A 3. generációs szuperskalárok hatékonysága (1) 5.5. ábra: Intel Pentium III és Pentium 4 processzorainak hatékonysága fixpontos feldolgozás esetén

5.6. ábra: AMD Athlon, Athlon XP és Athlon 64 processzorainak hatékonysága fixpontos feldolgozás esetén 5.3. A 3. generációs szuperskalárok hatékonysága (2)

5.7. ábra: A fejlett szuperskalárok hatékonyságát megszabó legfontosabb tényezők 5.3. A 3. generációs szuperskalárok hatékonysága (3)

5.8. ábra: Intel és AMD processzorok hatékonyságának összehasonlítása 5.3. A 3. generációs szuperskalárok hatékonysága (4)

5.9. ábra: Intel és AMD processzorok tervezési filozófiájának összehasonlítása 5.3. A 3. generációs szuperskalárok hatékonysága (5)

Növekvő órafrekvenciákon egyre csökkenő teljesítménytöbblet A processzorok hatékonysági korlátjának konzekvenciája: 5.3. A 3. generációs szuperskalárok hatékonysága (6)

6. A disszipációs korlát (1) Disszipáció (D) : D d =A*C*V 2 *f c ahol: A:aktív kapuk részaránya C:a kapuk összesített kapacitása V:tápfeszültség f c :órafrekvencia I leak :szivárgási áram Dinamikus Statikus D s =V*I leak

6.1. ábra: Intel processzorok fajlagos disszipációja 6. A disszipációs korlát (2)

6.2. ábra: Intel és AMD processzorok 6. A disszipációs korlát (3)

6.3. ábra: Intel P4 processzorcsaládja (Netburst architektúra) 6. A disszipációs korlát (4)

6.4. ábra: A fajlagos disszipáció értékének növekedése (általában) Forrás: R Hetherington, „The UltraSPARC T1 Processor” White Paper, Sun Inc., A disszipációs korlát (5)

A processzorok tervezésében a disszipáció csökkentő technikák előtérbe kerülése Az órafrekvencia növelésén alapuló fejlesztési irány háttérbe szorulása A disszipációs korlát konzekvenciái: 6. A disszipációs korlát (6)

Kiváltó ok: 7.1. ábra: Párhuzamos buszok bitvezetékei közötti futási idő különbségek (skew) 7. Párhuzamos buszok frekvenciakorlátja (1)

7.2. ábra: A futási idő különbségek (skew) kiegyenlítése a MSI 915 G Combo alaplap processzor buszánál 7. Párhuzamos buszok frekvenciakorlátja (2)

Soros buszok használata 7.3. ábra: Jelátvitel soros buszon 7. Párhuzamos buszok frekvenciakorlátja (3) (lassú buszoknál is, költségokokból) Párhuzamos buszok frekvenciakorlátja által kiváltott trend:

Az órafrekvenciák növelésén alapuló fejlődési főirány hatékonysági, disszipációs és skew korlátokba ütközik és tovább már nem követhető A fejlődési korlátok felerősödésének konzekvenciája

Az órafrekvencia erőteljes növelése EPIC architektúrák kifejlesztése A fejlődés fővonala (4. – 7. pontok) 8. EPIC architektúrák/processzorok (1) (8. pont)

Szuperskalár feldolgozás elve FEFE FEFE FEFE dinamikus függőség kezelés Processzor függő utasítások utasítások VLIW feldolgozás elve FEFE FEFE FEFE VLIW: Very Large Instruction Word független utasítások (statikus függőség kezelés) Processzor 8.1. ábra: VLIW processzorok működési elve 8. EPIC architektúrák/processzorok (2)

1994: Intel, HP 2001: IA-64  Itanium 1997:EPIC elnevezés VLIWEPIC EPIC: Explicitly Parallel Instruction Computer Továbbfejlesztett VLIW elágazásbecslés explicit cache utasítások 8. EPIC architektúrák/processzorok (3) (fejlett szuperskalár vonások integrálása)

8.2. ábra: Itanium alapú magok áttekintése 8. EPIC architektúrák/processzorok (4)

8.3. ábra: Itanium processzorok hatékonysága 8. EPIC architektúrák/processzorok (5)

8.4. ábra: Az IA-64 architektúra elterjedésével kapcsolatos várakozások Forrás: L. Gwennap: Intel’s Itanium and IA-64: Technology and Market Forecast, MDR, EPIC architektúrák/processzorok (6)

8.5. ábra: Az Itanium processzorok értékesítési elvárásainak módosulása 8. EPIC architektúrák/processzorok (7)

Általános célú alkalmazásokban az EPIC architektúrák/processzorok kiszorulása 8. EPIC architektúrák/processzorok (8)

Általános célú alkalmazásokban a 2. generációs szuperskalárok megjelenésével a processzorok hatékonysága stagnálni kezdett, ez két fejlesztési főirányt váltott ki, de mindkét megközelítés korlátokba ütközött Egymagos szuperskalárok - egy korszak alkonya 9. Paradigmaváltás (1)

Paradigmaváltás a processzorok fejlesztésében A többmagos (többszálas) processzorok korszakába léptunk 9. Paradigmaváltás (2) A magok várható duplázódási ideje is közelítőleg ~ 24 hónap A rendelkezésre álló hardver komplexitás továbbra is exponenciálisan nő (Moore törvénye) Jelenleg a tranzisztorszám ~ 24 havonta duplázódik

9.1. ábra:Többmagos processzorok robbanásszerű elterjedése az Intel processzorok példáján 9. Paradigmaváltás (3)